Archive

Posts Tagged ‘Cloud’

Dear Verizon Business: I Have Some Questions About Your PCI-Compliant Cloud…

August 24th, 2010 5 comments

You’ll forgive my impertinence, but the last time I saw a similar claim of a PCI compliant Cloud offering, it turned out rather anti-climatically for RackSpace/Mosso, so I just want to make sure I understand what is really being said.  I may be mixing things up in asking my questions, so hopefully someone can shed some light.

This press release announces that:

“…Verizon’s On-Demand Cloud Computing Solution First to Achieve PCI Compliance” and the company’s cloud computing solution called Computing as a Service (CaaS) which is “…delivered from Verizon cloud centers in the U.S. and Europe, is the first cloud-based solution to successfully complete the Payment Card Industry Data Security Standard (PCI DSS) audit for storing, processing and transmitting credit card information.”

It’s unclear to me (at least) what’s considered in scope and what level/type of PCI certification we’re talking about here since it doesn’t appear that the underlying offering itself is merchant or transactional in nature, but rather Verizon is operating as a service provider that stores, processes, and transmits cardholder data on behalf of another entity.

Here’s what the article says about what Verizon undertook for DSS validation:

To become PCI DSS-validated, Verizon CaaS underwent a comprehensive third-party examination of its policies, procedures and technical systems, as well as an on-site assessment and systemwide vulnerability scan.

I’m interested in the underlying mechanicals of the CaaS offering.  Specifically, it would appear that the platform – compute, network, and storage — are virtualized.  What is unclear is if the [physical] resources allocated to a customer are dedicated or shared (multi-tenant,) regardless of virtualization.

According to this article in The Register (dated 2009,) the infrastructure is composed like this:

The CaaS offering from Verizon takes x64 server from Hewlett-Packard and slaps VMware’s ESX Server hypervisor and Red Hat Enterprise Linux instances atop it, allowing customers to set up and manage virtualized RHEL partitions and their applications. Based on the customer portal screen shots, the CaaS service also supports Microsoft’s Windows Server 2003 operating system.

Some details emerge from the Verizon website that describes the environment more:

Every virtual farm comes securely bundled with a virtual load balancer, a virtual firewall, and defined network space. Once the farm is designed, built, and named – all in a matter of minutes through the CaaS Customer Management Portal – you can then choose whether you want to manage the servers in-house or have us manage them for you.

If the customer chooses to manage the “servers…in-house (sic)” is the customer’s network, staff and practices now in-scope as part of Verizon’s CaaS validation? Where does the line start/stop?

I’m very interested in the virtual load balancer (Zeus ZXTM perhaps?) and the virtual firewall (vShield? Altor? Reflex? VMsafe-API enabled Virtual Appliance?)  What about other controls (preventitive or detective such as IDS, IPS, AV, etc.)

The reason for my interest is how, if these resources are indeed shared, they are partitioned/configured and kept isolated especially in light of the fact that:

Customers have the flexibility to connect to their CaaS environment through our global IP backbone or by leveraging the Verizon Private IP network (our Layer 3 MPLS VPN) for secure communication with mission critical and back office systems.

It’s clear that Verizon has no dominion over what’s contained in the VM’s atop the hypervisor, but what about the network to which these virtualized compute resources are connected?

So for me, all this all comes down to scope. I’m trying to figure out what is actually included in this certification, what components in the stack were audited and how.  It’s not clear I’m going to get answers, but I thought I’d ask any way.

Oh, by the way, transparency and auditability would be swell for an environment such as this. How about CloudAudit? We even have a PCI DSS CompliancePack 😉

Question for my QSA peeps: Are service providers required to also adhere to sections like 6.6 (WAF/Binary analysis) of their offerings even if they are not acting as a merchant?

/Hoff

Related articles by Zemanta

Enhanced by Zemanta

Video Of My Cloudifornication Presentation [Microsoft BlueHat v9]

August 16th, 2010 2 comments

In advance of publishing a more consolidated compilation of various recordings of my presentations, I thought I’d post this one.

This is from Microsoft’s BlueHat v9 and is from my “Cloudifornication: Indiscriminate Information Intercourse Involving Internet Infrastructure” presentation.

The direct link is here in case you have scripting disabled.

The follow-on to this is my latest presentation – “Cloudinomicon: Idempotent Infrastructure, Building Survivable Systems, and Bringing Sexy Back To Information Centricity.

Related articles by Zemanta

Enhanced by Zemanta

The Security Hamster Sine Wave Of Pain: Public Cloud & The Return To Host-Based Protection…

July 7th, 2010 7 comments
Snort Intrusion Detection System Logo
Image via Wikipedia

This is a revisitation of a blog I wrote last year: Incomplete Thought: Cloud Security IS Host-Based…At The Moment

I use my ‘Security Hamster Sine Wave of Pain” to illustrate the cyclical nature of security investment and deployment models over time and how disruptive innovation and technology impacts the flip-flop across the horizon of choice.

To wit: most mass-market Public Cloud providers such as Amazon Web Services rely on highly-abstracted and limited exposure of networking capabilities.  This means that most traditional network-based security solutions are impractical or non-deployable in these environments.

Network-based virtual appliances which expect generally to be deployed in-line with the assets they protect are at a disadvantage given their topological dependency.

So what we see are security solution providers simply re-marketing their network-based solutions as host-based solutions instead…or confusing things with Barney announcements.

Take a press release today from SourceFire:

Snort and Sourcefire Vulnerability Research Team(TM) (VRT) rules are now available through the Amazon Elastic Compute Cloud (Amazon EC2) in the form of an Amazon Machine Image (AMI), enabling customers to proactively monitor network activity for malicious behavior and provide automated responses.

Leveraging Snort installed on the AMI, customers of Amazon Web Services can further secure their most critical cloud-based applications with Sourcefire’s leading protection. Snort and Sourcefire(R) VRT rules are also listed in the Amazon Web Services Solution Partner Directory, so that users can easily ensure that their AMI includes the latest updates.

As far as I can tell, this means you can install a ‘virtual appliance’ of Snort/Sourcefire as a standalone AMI, but there’s no real description on how one might actually implement it in an environment that isn’t topologically-friendly to this sort of network-based implementation constraint.*

Since you can’t easily “steer traffic” through an IPS in the model of AWS, can’t leverage promiscuous mode or taps, what does this packaging implementation actually mean?  Also, if  one has a few hundred AMI’s which contain applications spread out across multiple availability zones/regions, how does a solution like this scale (from both a performance or management perspective?)

I’ve spoken/written about this many times:

Where Are the Network Virtual Appliances? Hobbled By the Virtual Network, That’s Where… and

Dear Public Cloud Providers: Please Make Your Networking Capabilities Suck Less. Kthxbye

Ultimately, expect that Public Cloud will force the return to host-based HIDS/HIPS deployments — the return to agent-based security models.  This poses just as many operational challenges as those I allude to above.  We *must* have better ways of tying together network and host-based security solutions in these Public Cloud environments that make sense from an operational, cost, and security perspective.

/Hoff

Related articles by Zemanta

* I “spoke” with Marty Roesch on the Twitter and he filled in the gaps associated with how this version of Snort works – there’s a host-based packet capture element with a “network” redirect to a stand-alone AMI:

@Beaker AWS->Snort implementation is IDS-only at the moment, uses software packet tap off customer app instance, not topology-dependent

and…

they install our soft-tap on their AMI and send the traffic to our AMI for inspection/detection/reporting.

It will be interesting to see how performance nets out using this redirect model.

Enhanced by Zemanta

Incomplete Thought: The DevOps Disconnect

May 31st, 2010 17 comments

DevOps — what it means and how it applies — is a fascinating topic that inspires all sorts of interesting reactions from people, polarized by their interpretation of what this term really means.

At CloudCamp Denver, adjacent to Gluecon, Aaron Peterson of OpsCode gave a lightning talk titled: “Operations as Code.”  I’ve seen this presentation on-line before, but listened intently as Aaron presented.  You can see John Willis’ version on Slideshare here.  Adrian Cole (@adrianfcole) of jClouds fame (and now Opscode) and I had an awesome hour-long discussion afterwards that was the genesis for this post.

“Operations as Code” (I’ve seen it described also as “Infrastructure as Code”) is really a fantastically sexy and intriguing phrase.  When boiled down, what I extract is that the DevOps “movement” is less about developers becoming operators, but rather the notion that developers can be part of the process whereby they help enable operations/operators to repeatably and with discipline, automate processes that are otherwise manual and prone to error.

[Ed: great feedback from Andrew Shafer: “DevOps isn’t so much about developers helping operations, it’s about operational concerns becoming more and more programmable, and operators becoming more and more comfortable and capable with that.  Further, John Allspaw (@allspaw) added some great commentary below – talking about DevOps really being about tools + culture + communication. Adam Jacobs from Opscode *really* banged out a great set of observations in the comments also. All good perspective.]

Automate, automate, automate.

While I find the message of DevOps totally agreeable, it’s the messaging that causes me concern, not because of the groups it includes, but those that it leaves out.  I find that the most provocative elements of the DevOps “manifesto” (sorry) are almost religious in nature.  That’s to be expected as most great ideas are.

In many presentations promoting DevOps, developers are shown to have evolved in practice and methodology, but operators (of all kinds) are described as being stuck in the dark ages. DevOps evangelists paint a picture that compares and contrasts the Agile-based, reusable componentized, source-controlled, team-based and integrated approach of “evolved” development environments with that of loosely-scripted, poorly-automated, inefficient, individually-contributed, undisciplined, non-source-controlled operations.

You can see how this might be just a tad off-putting to some people.

In Aaron’s presentation, the most interesting concept to me is the definition of “infrastructure.” Take the example to the right, wherein various “infrastructure” roles are described.  What should be evident is that to many — especially those in enterprise (virtualized or otherwise) or non-Cloud environments — is that these software-only components represent only a fraction of what makes up “infrastructure.”

The loadbalancer role, as an example makes total sense if you’re using HAproxy or Zeus ZXTM. What happens if it’s an F5 or Cisco appliance?

What about the routers, switches, firewalls, IDS/IPS, WAFs, SSL engines, storage, XML parsers, etc. that make up the underpinning of the typical datacenter?  The majority of these elements — as most of them exist today — do not present consistent interfaces for automation/integration. Most of them utilize proprietary/closed API’s for management that makes automation cumbersome if not impossible across a large environment.

Many will react to that statement by suggesting that this is why Cloud Computing is the great equalizer — that by abstracting the “complexity” of these components into a more “simplified” set of software resources versus hardware, it solves this problem and without the hardware-centric focus of infrastructure and the operations mess that revolves around it today, we’re free to focus on “building the business versus running the business.”

I’d agree.  The problem is that these are two different worlds.  The mass-market IaaS/PaaS providers who provide abstracted representations of infrastructure are still the corner-cases when compared to the majority of service providers who are entering the Cloud space specifically focused on serving the enterprise, and the enterprise — even those that are heavily virtualized — still very dependent upon hardware.

This is where the DevOps messaging miss comes — at least as it’s described today. DevOps is really targeted (today) toward the software-homogeneity of public, mass-market Cloud environments (such as Amazon Web Services) where infrastructure can be defined as abstract component, software-only roles, not the complex mish-mash of hardware-focused IT of the enterprise as it currently stands. This may be plainly obvious to some, but the messaging of DevOps is obscuring the message which is unfortunate.

DevOps is promoted today as a target operational end-state without explicitly defining that the requirements for success really do depend upon the level of abstraction in the environment; it’s really focused on public Cloud Computing.  In and of itself, that’s not a bad thing at all, but it’s a “marketing” miss when it comes to engaging with a huge audience who wants and needs to get the DevOps religion.

You can preach to the choir all day long, but that’s not going to move the needle.

My biggest gripe with the DevOps messaging is with the name itself. If you expect to truly automate “infrastructure as code,” we really should call it NetSecDevOps. Leaving the network and security teams — and the infrastructure they represent — out of the loop until they are either subsumed by software (won’t happen) or get religion (probable but a long-haul exercise) is counter-productive.

Take security, for example. By design, 95% of security technology/solutions are — by design — not easily automatable or are built to require human interaction given their mission and lack of intelligence/correlation with other tools.  How do you automate around that?  It’s really here that the statement I’ve made that “security doesn’t scale” is apropos. Believe me, I’m not making excuses for the security industry, nor am I suggesting this is how it ought to be, but it is how it currently exists.

Of course we’re seeing the next generation of datacenters in the enterprise become more abstract. With virtualization and cloud-like capabilities being delivered with automated provisioning, orchestration and governance by design for BOTH hardware and software and the vision of private/public cloud integration baked into enterprise architecture, we’re actually on a path where DevOps — at its core — makes total sense.

I only wish that (NetSec)DevOps evangelists — and companies such as Opscode — would  address this divide up-front and start to reach out to the enterprise world to help make DevOps a goal that these teams aspire to rather than something to rub their noses in.  Further, we need a way for the community to contribute things like Chef recipes that allow for flow-through role definition support for hardware-based solutions that do have exposed management interfaces (Ed: Adrian referred to these in a tweet as ‘device’ recipes)

/Hoff

Related articles by Zemanta

Enhanced by Zemanta

Novell Marketing Genius: Interpretive Reading Of One Of My Cloud Security Blog Posts…

May 18th, 2010 1 comment

Speechless.

The embedded version (Flash) appears below. Direct link here.

“Cloud: Security Doesn’t Matter (Or, In Cloud, Nobody Can Hear You Scream)” by Chris Hoff from Novell, Inc. on Vimeo.

Hysterical.

/Hoff

Security: In the Cloud, For the Cloud & By the Cloud…

May 3rd, 2010 1 comment

When my I interact with folks and they bring up the notion of “Cloud Security,” I often find it quite useful to stop and ask them what they mean.  I thought perhaps it might be useful to describe why.

In the same way that I differentiated “Virtualizing Security, Securing Virtualization and Security via Virtualization” in my Four Horsemen presentation, I ask people to consider these three models when discussing security and Cloud:

  1. In the Cloud: Security (products, solutions, technology) instantiated as an operational capability deployed within Cloud Computing environments (up/down the stack.) Think virtualized firewalls, IDP, AV, DLP, DoS/DDoS, IAM, etc.
  2. For the Cloud: Security services that are specifically targeted toward securing OTHER Cloud Computing services, delivered by Cloud Computing providers (see next entry) . Think cloud-based Anti-spam, DDoS, DLP, WAF, etc.
  3. By the Cloud: Security services delivered by Cloud Computing services which are used by providers in option #2 which often rely on those features described in option #1.  Think, well…basically any service these days that brand themselves as Cloud… 😉

At any rate, I combine these with other models and diagrams I’ve constructed to make sense of Cloud deployment and use cases. This seems to make things more clear.  I use it internally at work to help ensure we’re all talking about the same language.

/Hoff

Related articles by Zemanta

Reblog this post [with Zemanta]

You Can’t Secure The Cloud…

April 30th, 2010 3 comments

That’s right. You can’t secure “The Cloud” and the real shocker is that you don’t need to.

You can and should, however, secure your assets and the elements within your control that are delivered by cloud services and cloud service providers, assuming of course there are interfaces to do so made available by the delivery/deployment model and you’ve appropriately assessed them against your requirements and appetite for risk.

That doesn’t mean it’s easy, cheap or agile, and lest we forget, just because you can “secure” your assets does not mean you’ll achieve “compliance” with those mandates against which you might be measured.

Even if you’re talking about making investments primarily in solutions via software thanks to the abstraction of cloud (and/or virtualization) as well adjusting processes and procedures due to operational impact, you can generally effect compensating controls (preventative and/or detective) that give you security on-par with what you might deploy today in a non-Cloud based offering.

Yes, it’s true. It’s absolutely possible to engineer solutions across most cloud services today that meet or exceed the security provided within the walled gardens of your enterprise today.

The realities of that statement come crashing down, however, when people confuse possibility with the capability to execute whilst not disrupting the business and not requiring wholesale re-architecture of applications, security, privacy, operations, compliance, economics, organization, culture and governance.

Not all of that is bad.  In fact, most of it is long overdue.

I think what is surprising is how many people (or at least vendors) simply suggest or expect that the “platform” or service providers to do all of this for them across the entire portfolio of services in an enterprise.  In my estimation that will never happen, at least not if one expects anything more than commodity-based capabilities at a cheap price while simultaneously being “secure.”

Vendors conflate the various value propositions of cloud (agility, low cost, scalability, security) and suggest you can achieve all four simultaneously and in equal proportions.  This is the fallacy of Cloud Computing.  There are trade-offs to be found with every model and Cloud is no different.

If we’ve learned anything from enterprise modernization over the last twenty years, it’s that nothing comes for free — and that even when it appears to, there’s always a tax to pay on the back-end of the delivery cycle.  Cloud computing is a series of compromises; it’s all about gracefully losing control over certain elements of the operational constructs of the computing experience. That’s not a bad thing, but it’s a painful process for many.

I really enjoy the forcing function of Cloud Computing; it makes us re-evaluate and sharpen our focus on providing service — at least it’s supposed to.  I look forward to using Cloud Computing as a lever to continue to help motivate industry, providers and consumers to begin to fix the material defects that plague IT and move the ball forward.

This means not worrying about securing the cloud, but rather understanding what you should do to secure your assets regardless of where they call home.

/Hoff

Related articles by Zemanta

Reblog this post [with Zemanta]

The Four Horsemen Of the Virtualization (and Cloud) Security Apocalypse…

April 25th, 2010 No comments

I just stumbled upon this YouTube video (link here, embedded below) interview I did right after my talk at Blackhat 2008 titled “The 4 Horsemen of the Virtualization Security Apocalypse (PDF)” [There’s a better narrative to the PDF that explains the 4 Horsemen here.]

I found it interesting because while it was rather “new” and interesting back then, if you ‘s/virtualization/cloud‘ especially from the perspective of heavily virtualized or cloud computing environments, it’s even more relevant today!  Virtualization and the abstraction it brings to network architecture, design and security makes for interesting challenges.  Not much has changed in two years, sadly.

We need better networking, security and governance capabilities! 😉

Same as it ever was.

/Hoff

Reblog this post [with Zemanta]

Incomplete Thought: “The Cloud in the Enterprise: Big Switch or Little Niche?”

April 19th, 2010 1 comment

Joe Weinman wrote an interesting post in advance of his panel at Structure ’10 titled “The Cloud in the Enterprise: Big Switch or Little Niche?” wherein he explored the future of Cloud adoption.

In this blog, while framing the discussion with Nick Carr‘s (in)famous “Big Switch” utility analog, he asks the question:

So will enterprise cloud computing represent The Big Switch, a dimmer switch or a little niche?

…to which I respond:

I think it will be analogous to the “Theory of Punctuated Equilibrium,” wherein we see patterns not unlike classical dampened oscillations with many big swings ultimately settling down until another disruption causes big swings again.  In transition we see niches appear until they get subsumed in the uptake.

Or, in other words such as those I posted on Twitter: “…lots of little switches AND big niches

Go see Joe’s panel. Better yet, comment on your thoughts here. 😉

/Hoff

Related articles by Zemanta

Reblog this post [with Zemanta]

Patching the (Hypervisor) Platform: How Do You Manage Risk?

April 12th, 2010 7 comments

Hi. Me again.

In 2008 I wrote a blog titled “Patching the Cloud” which I followed up with material examples in 2009 in another titled “Redux: Patching the Cloud.

These blogs focused mainly on virtualization-powered IaaS/PaaS offerings and whilst they targeted “Cloud Computing,” they applied equally to the heavily virtualized enterprise.  To this point I wrote another in 2008 titled “On Patch Tuesdays For Virtualization Platforms.

The operational impacts of managing change control, vulnerability management and threat mitigation have always intrigued me, especially at scale.

I was reminded this morning of the importance of the question posed above as VMware released a series of security advisories detailing ten vulnerabilities across many products, some of which are remotely exploitable. While security vulnerabilities in hypervisors are not new, it’s unclear to me how many heavily-virtualized enterprises or Cloud providers actually deal with what it means to patch this critical layer of infrastructure.

Once virtualized, we expect/assume that VM’s and the guest OS’s within them should operate with functional equivalence when compared to non-virtualized instances. We have, however, seen that this is not the case. It’s rare, but it happens that OS’s and applications, once virtualized, suffer from issues that cause faults to the underlying virtualization platform itself.

So here’s the $64,000 question – feel free to answer anonymously:

While virtualization is meant to effectively isolate the hardware from the resources atop it, the VMM/Hypervisor itself maintains a delicate position arbitrating this abstraction.  When the VMM/Hypervisor needs patching, how do you regression test the impact across all your VM images (across test/dev, production, etc.)?  More importantly, how are you assessing/measuring compound risk across shared/multi-tenant environments with respect to patching and its impact?

/Hoff

P.S. It occurs to me that after I wrote the blog last night on ‘high assurance (read: TPM-enabled)’ virtualization/cloud environments with respect to change control, the reference images for trust launch environments would be impacted by patches like this. How are we going to scale this from a management perspective?

Reblog this post [with Zemanta]