Archive

Posts Tagged ‘Cloud Computing’

CloudPassage & Why Guest-Based Footprints Matter Even More For Cloud Security

February 1st, 2011 4 comments
VM (operating system)

Image via Wikipedia

Every day for the last week or so after their launch, I’ve been asked left and right about whether I’d spoken to CloudPassage and what my opinion was of their offering.  In full disclosure, I spoke with them when they were in stealth almost a year ago and offered some guidance as well as the day before their launch last week.

Disappointing as it may be to some, this post isn’t really about my opinion of CloudPassage directly; it is, however, the reaffirmation of the deployment & delivery models for the security solution that CloudPassage has employed.  I’ll let you connect the dots…

Specifically, in public IaaS clouds where homogeneity of packaging, standardization of images and uniformity of configuration enables scale, security has lagged.  This is mostly due to the fact that for a variety of reasons, security itself does not scale (well.)

In an environment where the underlying platform cannot be counted upon to provide “hooks” to integrate security capabilities in at the “network” level, all that’s left is what lies inside the VM packaging:

  1. Harden and protect the operating system [and thus the stuff atop it,]
  2. Write secure applications and
  3. Enforce strict, policy-driven information-centric security.

My last presentation, “Cloudinomicon: Idempotent Infrastructure, Building Survivable Systems and Bringing Sexy Back to Information Centricity” addressed these very points. [This one is a version I delivered at the University of Michigan Security Summit]

If we focus on the first item in that list, you’ll notice that generally to effect policy in the guest, you must have a footprint on said guest — however thin — to provide the hooks that are needed to either directly effect policy or redirect back to some engine that offloads this functionality.  There’s a bit of marketing fluff associated with using the word “agentless” in many applications of this methodology today, but at some point, the endpoint needs some sort of “agent” to play*

So that’s where we are today.  The abstraction offered by virtualized public IaaS cloud platforms is pushing us back to the guest-centric-based models of yesteryear.

This will bring challenges with scale, management, efficacy, policy convergence between physical and virtual and the overall API-driven telemetry driven by true cloud solutions.

You can read more about this in some of my other posts on the topic:

Finally, since I used them for eyeballs, please do take a look at CloudPassage — their first (free) offerings are based upon leveraging small footprint Linux agents and a cloud-based SaaS “grid” to provide vulnerability management, and firewall/zoning in public cloud environments.

/Hoff

* There are exceptions to this rule depending upon *what* you’re trying to do, such as anti-malware offload via a hypervisor API, but this is not generally available to date in public cloud.  This will, I hope, one day soon change.

Enhanced by Zemanta

Revisiting Virtualization & Cloud Stack Security – Back to the Future (Baked In Or Bolted On?)

January 17th, 2011 No comments

[Like a good w[h]ine, this post goes especially well with a couple of other courses such as Hack The Stack Or Go On a Bender With a Vendor?, Incomplete Thought: Why Security Doesn’t Scale…Yet, What’s The Problem With Cloud Security? There’s Too Much Of It…, Incomplete Thought: The Other Side Of Cloud – Where The (Wild) Infrastructure Things Are… and Where Are the Network Virtual Appliances? Hobbled By the Virtual Network, That’s Where…]

There are generally three dichotomies of thought when it comes to the notion of how much security should fall to the provider of the virtualization or cloud stack versus that of the consumer of their services or a set of third parties:

  1. The virtualization/cloud stack provider should provide a rich tapestry of robust security capabilities “baked in” to the platform itself, or
  2. The virtualization/cloud stack provider should provide security-enabling hooks to enable an ecosystem of security vendors to provide the bulk of security (beyond isolation) to be “bolted on,” or
  3. The virtualization/cloud stack provider should maximize the security of the underlying virtualization/cloud platform and focus on API security, isolation and availability of service only while pushing the bulk of security up into the higher-level programatic/application layers, or

So where are we today?  How much security does the stack, itself, need to provide. The answer, however polarized, is somewhere in the murkiness dictated by the delivery models, deployment models, who owns what part of the real estate and the use cases of both the virtualization/cloud stack provider and ultimately the consumer.

I’ve had a really interesting series of debates with the likes of Simon Crosby (of Xen/Citrix fame) on this topic and we even had a great debate at RSA with Steve Herrod from VMware.  These two “infrastructure” companies and their solutions typify the diametrically opposed first two approaches to answering this question while cloud providers who own their respective custom-rolled “stacks” at either end of IaaS and SaaS spectrums such as Amazon Web Services and Salesforce bringing up the third.

As with anything, this is about the tenuous balance of “security,” compliance, cost, core competence and maturity of solutions coupled with the sensitivity of the information that requires protection and the risk associated with the lopsided imbalance that occurs in the event of loss.

There’s no single best answer which explains why were have three very different approaches to what many, unfortunately, view as the same problem.

Today’s “baked in” security capabilities aren’t that altogether mature or differentiated, the hooks and APIs that allow for diversity and “defense in depth” provide for new and interesting ways to instantiate security, but also add to complexity, driving us back to an integration play.  The third is looked upon as proprietary and limiting in terms of visibility and transparency and don’t solve problems such as application and information security any more than the other two do.

Will security get “better” as we move forward with virtualization and cloud computing.  Certainly.  Perhaps because of it, perhaps in spite of it.

One thing’s for sure, it’s going to be messy, despite what the marketing says.

Related articles

Enhanced by Zemanta

Incomplete Thought: Why Security Doesn’t Scale…Yet.

January 11th, 2011 1 comment
X-ray machines and metal detectors are used to...
Image via Wikipedia

There are lots of reasons one might use to illustrate why operationalizing security — both from the human and technology perspectives — doesn’t scale.

I’ve painted numerous pictures highlighting the cyclical nature of technology transitions, the supply/demand curve related to threats, vulnerabilities, technology and compensating controls and even relevant anecdotes involving the intersection of Moore’s and Metcalfe’s laws.  This really was a central theme in my Cloudinomicon presentation; “idempotent infrastructure, building survivable systems and bringing sexy back to information centricity.”

Here are some other examples of things I’ve written about in this realm.

Batting around how public “commodity” cloud solutions forces us to re-evaluate how, where, why and who “does” security was an interesting journey.  Ultimately, it comes down to architecture and poking at the sanctity of models hinged on an operational premise that may or may not be as relevant as it used to be.

However, I think the most poignant and yet potentially obvious answer to the “why doesn’t security scale?” question is the fact that security products, by design, don’t scale because they have not been created to allow for automation across almost every aspect of their architecture.

Automation and the interfaces (read: APIs) by which security products ought to be provisioned, orchestrated, and deployed are simply lacking in most security products.

Yes, there exist security products that are distributed but they are still managed, provisioned and deployed manually — generally using a management hub-spoke model that doesn’t lend itself to automated “anything” that does not otherwise rely upon bubble-gum and bailing wire scripting…

Sure, we’ve had things like SNMP as a “standard interface” for “management” for a long while 😉  We’ve had common ways of describing threats and vulnerabilities.  Recently we’ve seen the emergence of XML-based APIs emerge as a function of the latest generation of (mostly virtualized) firewall technologies, but most products still rely upon stand-alone GUIs, CLIs, element managers and a meat cloud of operators to push the go button (or reconfigure.)

Really annoying.

Alongside the lack of standard API-based management planes, control planes are largely proprietary and the output for correlated event-driven telemetry at all layers of the stack is equally lacking.  Of course the applications and security layers that run atop infrastructure are still largely discrete thus making the problem more difficult.

The good news is that virtualization in the enterprise and the emergence of the cultural and operational models predicated upon automation are starting to influence product roadmaps in ways that will positively affect the problem space described above but we’ve got a long haul as we make this transition.

Security vendors are starting to realize that they must retool many of their technology roadmaps to deal with the impact of dynamism and automation.  Some, not all, are discovering painfully the fact that simply creating a virtualized version of a physical appliance doesn’t make it a virtual security solution (or cloud security solution) in the same way that moving an application directly to cloud doesn’t necessarily make it a “cloud application.”

In the same way that one must often re-write or specifically design applications “designed” for cloud, we have to do the same for security.  Arguably there are things that can and should be preserved; the examples of the basic underpinnings such as firewalls that at their core don’t need to change but their “packaging” does.

I’m privy to lots of the underlying mechanics of these activities — from open source to highly-proprietary — and I’m heartened by the fact that we’re beginning to make progress.  We shouldn’t have to make a distinction between crafting and deploying security policies in physical or virtual environments.  We shouldn’t be held hostage by the separation of application logic from the underlying platforms.

In the long term, I’m optimistic we won’t have to.

/Hoff

Related articles

Enhanced by Zemanta

The Curious Case Of the MBO Cloud

December 23rd, 2010 1 comment

I was speaking to an enterprise account manager the other day regarding strategic engagements in Cloud Computing in very large enterprises.

He remarked on the non-surprising parallelism occurring as these companies build and execute on cloud strategies that involve both public and private cloud initiatives.

Many of them are still trying to leverage the value of virtualization and are thus often conservative about their path forward.  Many are blazing new trails.

We talked about the usual barriers to entry for even small PoC’s: compliance, security, lack of expertise, budget, etc., and then he shook his head solemnly, stared at the ground and mumbled something about a new threat to the overall progress toward enterprise cloud adoption.

MBO Cloud.

We’ve all heard of public, private, virtual private, hybrid, and community clouds, right? But “MBO Cloud?”

I asked. He clarified:

Cloud computing is such a hot topic, especially with its promise of huge cost savings, agility, and the reduced time-to-market for services and goods that many large companies who might otherwise be unable or unwilling to be able to pilot using a public cloud provider and also don’t want to risk much if any capital outlay for software and infrastructure to test private cloud are taking an interesting turn.

They’re trying to replicate Amazon or Google but not for the right reasons or workloads. They just look at “cloud” as some generic low-cost infrastructure platform that requires some open source and a couple of consultants — or even a full-time team of “developers” assigned to make it tick.

They rush out, buy 10 off-the-shelf white-label commodity multi-CPU/multi-core servers, acquire a plain vanilla NAS or low-end SAN storage appliance, sprinkle on some Xen or KVM, load on some unremarkable random set of open source software packages to test with a tidy web front-end and call it “cloud.”  No provisioning, no orchestration, no self-service portals, no chargeback, no security, no real scale, no operational re-alignment, no core applications…

It costs them next to nothing and it delivers about the same because they’re not designing for business cases that are at all relevant, they’re simply trying to copy Amazon and point to a shiny new rack as “cloud.”

Why do they do this? To gain experience and expertise? To dabble cautiously in an emerging set of technological and operational models?  To offload critical workloads that scale up and down?

Nope.  They do this for two reasons:

  1. Now that they have proven they can “successfully” spin up a “cloud” — however useless it may be — that costs next to nothing, it gives them leverage to squeeze vendors on pricing when and if they are able to move beyond this pile of junk, and
  2. Management By Objectives (MBO) — or a fancy way of saying, “bonus.”  Many C-levels and their ops staff are compensated via bonus on hitting certain objectives. One of them (for all the reasons stated above) is “deliver on the strategy and execution for cloud computing.” This half-hearted effort sadly qualifies.

So here’s the problem…when these efforts flame out and don’t deliver, they will impact the success of cloud in general — everywhere from a private cloud vendor to even potentially public cloud offers like AWS.  Why?  Because as we already know, *anything* that smells at all like failure gets reflexively blamed on cloud these days, and as these craptastic “cloud” PoC’s fail to deliver — even on minimal cash outlay — it’s going to be hard to gain a second choice given the bad taste left in the mouths of the business and management.

The opposite point could also be made in regard to public cloud services — that these truly “false cloud*” trials based on poorly architected and executed bubble gum and bailing wire will drive companies to public cloud (however longer that may take as compliance and security catch up.)

It will be interesting to see which happens first.

Either way, beware the actual “false cloud” but realize that the motivation behind many of them isn’t the betterment of the business or evolution of IT, it’s the fattening of wallets.

/Hoff

* I’m leveraging “false cloud” here to truly illustrate a point; despite actually useful private cloud initiatives, this is a term unfortunately levied on all private cloud initiatives by certain public cloud providers.

Enhanced by Zemanta

Incomplete Thought: Why We Have The iPhone and AT&T To Thank For Cloud…

December 15th, 2010 1 comment
Image representing iPhone as depicted in Crunc...
Image via CrunchBase

I’m not sure this makes any sense whatsoever, but that’s why it’s labeled “incomplete thought,” isn’t it? 😉

A few weeks ago I was delivering my Cloudinomicon talk at the Cloud Security Alliance Congress in Orlando and as I was describing the cyclical nature of computing paradigms and the Security Hamster Sine Wave of Pain, it dawned on me — out loud — that we have Apple’s iPhone and its U.S. carrier, AT&T, to thank for the success of Cloud Computing.

My friends from AT&T perked up when I said that.  Then I explained…

So let me set this up. It will require some blog article ping-pong in order to reference earlier scribbling on the topic, but here’s the very rough process:

  1. I’ve pointed out that there are two fundamental perspectives when describing Cloud and Cloud Computing: the operational provider’s view and the experiential consumer’s view.  To the provider, the IT-centric, empirical and clinical nuances are what matters. To the consumer, anything that connects to the Internet via any computing platform using any app that interacts with any sort of information is also cloud.  There’s probably a business/market view, but I’ll keep things simple for purpose of illustration.  I wrote about this here:  Cloud/Cloud Computing Definitions – Why they Do(n’t) Matter…
  2. As we look at the adoption of cloud computing, the consumption model ultimately becomes more interesting than how the service is delivered (as it commoditizes.) My presentation “The Future of Cloud” focused on the fact that the mobile computing platforms (phones, iPads, netbooks, thin(ner) clients, etc) are really the next frontier.  I pointed out that we have the simultaneous mass re-centralization of applications and data in massive cloud data centers (however distributed ethereally they may be) and the massive distribution of the same applications and data across increasingly more intelligent, capable and storage-enabled mobile computing devices.  I wrote about this here: Slides from My Cloud Security Alliance Keynote: The Cloud Magic 8 Ball (Future Of Cloud)
  3. The iPhone isn’t really that remarkable a piece of technology in and of itself, in fact it capitalizes on and cannibalizes many innovations and technologies that came before it.  However, as I mentioned in my post “Cloud Maturity: Just Like the iPhone, There’s An App For That…The thing I love about my iPhone is that it’s not a piece of technology I think about but rather, it’s the way I interact with it to get what I want done.  It has its quirks, but it works…for millions of people.  Add in iTunes, the community of music/video/application artists/developers and the ecosystem that surrounds it, and voila…Cloud.”

  4. At each and every compute paradigm shift, we’ve seen the value of the network waffle between “intelligent” platform and simple transport depending upon where we were with the intersection of speeds/feeds and ubiquity/availability of access (the collision of Moore’s and Metcalfe’s laws?)  In many cases, we’ve had to rely on workarounds that have hindered the adoption of really valuable and worthwhile technologies and operational models because the “network” didn’t deliver.

I think we’re bumping up against point #4 today.  So here’s where I find this interesting.  If we see the move to the consumerized view of accessing resources from mobile platforms to resources located both on-phone and in-cloud, you’ll notice that even in densely-populated high-technology urban settings, we have poor coverage, slow transit and congested, high-latency, low-speed access — wired and wireless for that matter.

This is a problem. In fact it’s such a problem that if we look backward to about 4 years ago when “cloud computing” and the iPhone became entries in the lexicon of popular culture, this issue completely changed the entire application deployment model and use case of the iPhone as a mobile platform.  Huh?

Do you remember when the iPhone first came out? It was a reasonably capable compute platform with a decent amount of storage. It’s network connectivity, however, sucked.

Pair that with the fact that the application strategy was that there was emphatically, per Steve Jobs, not going to be native applications on the iPhone for many reasons, including security.  Every application was basically just a hyperlink to a web application located elsewhere.  The phone was nothing more than a web browser that delivered applications running elsewhere (for the most part, especially when things like Flash were’nt present.) Today we’d call that “The Cloud.”

Interestingly, at this point, he value of the iPhone as an application platform was diminished since it was not highly differentiated from any other smartphone that had a web browser.

Time went by and connectivity was still so awful and unreliable that Apple reversed direction to drive value and revenue in the platform, engaged a developer community, created the App Store and provided for a hybrid model — apps both on-platform and off — in order to deal with this lack of ubiquitous connectivity.  Operating systems, protocols and applications were invented/deployed in order to deal with the synchronization of on- and off-line application and information usage because we don’t have pervasive high-speed connectivity in the form of cellular or wifi such that we otherwise wouldn’t care.

So this gets back to what I meant when I said we have AT&T to thank for Cloud.  If you can imagine that we *did* have amazingly reliable and ubiquitous connectivity from devices like our iPhones — those consumerized access points to our apps and data — perhaps the demand for and/or use patterns of cloud computing would be wildly different from where they are today. Perhaps they wouldn’t, but if you think back to each of those huge compute paradigm shifts — mainframe, mini, micro, P.C., Web 1.0, Web 2.0 — the “network” in terms of reliability, ubiquity and speed has always played a central role in adoption of technology and operational models.

Same as it ever was.

So, thanks AT&T — you may have inadvertently accelerated the back-end of cloud in order to otherwise compensate, leverage and improve the front-end of cloud (and vice versa.)  Now, can you do something about the fact that I have no signal at my house, please?

/Hoff

Enhanced by Zemanta

From the Concrete To The Hypervisor: Compliance and IaaS/PaaS Cloud – A Shared Responsibility

December 6th, 2010 No comments

* Update:  A few hours after writing this last night, AWS announced they had achieved Level 1 PCI DSS Compliance.* If you pay attention to how the announcement is worded, you’ll find a reasonable treatment of what PCI compliance means to an IaaS cloud provider – it’s actually the first time I’ve seen this honestly described:

Merchants and other service providers can now run their applications on AWS PCI-compliant technology infrastructure to store, process and transmit credit card information in the cloud. Customers can use AWS cloud infrastructure, which has been validated at the highest level (Level 1) of PCI compliance, to build their cardholder environment and achieve PCI certification for their applications.

Note how they phrased this, then read my original post below.

However, pay no attention to the fact that they chose to make this announcement on Pearl Harbor Day 😉

Here’s the thing…

A cloud provider can achieve compliance (such as PCI — yes v2.0 even) such that the in-scope elements of that provider which are audited and assessed can ultimately contribute to the compliance of a customer operating atop that environment.  We’ve seen a number of providers assert compliance across many fronts, but they marketed their way into a yellow card by over-reaching…

It should be clear already, but for a service to be considered compliant, it clearly means that the customer’s in-scope elements running atop a cloud provider must also undergo and achieve compliance.

That means compliance is elementally additive the same way “security” is when someone else has direct operational control over elements in the stack you don’t.

In the case of an IaaS cloud provider who may achieve compliance from the “concrete to the hypervisor,” (let’s use PCI again,) the customer in turn must have the contents of the virtual machine (OS, Applications, operations, controls, etc.) independently assessed and meet PCI compliance in order that the entire stack of in-scope elements can be described as compliant.

Thus security — and more specifically compliance — in IaaS (and PaaS) is a shared responsibility.

I’ve spent many a blog battling marketing dragons from cloud providers that assert or imply that by only using said provider’s network which has undergone and passed one or more audits against a compliance framework, that any of its customers magically inherit certification by default. I trust this is recognized as completely false.

As compliance frameworks catch up to the unique use-cases that multi-tenancy and technologies such as virtualization bring, we’ll see more “compliant cloud” offerings spring up, easing customer pain related to the underlying moving parts.  This is, for example, what FedRAMP is aiming to provide with “pre-approved” cloud offerings.  We’ve got visibility and transparency issues to solve , as well as temporal issues such as the frequency and period of compliance audits, but there’s progress.

We’re going to see more and more of this as infrastructure- and platform-as-a-service vendors look to mutually accelerate compliance to achieve that which software-as-a-service can more organically deliver as a function of stack control.

/Hoff

* Note: It’s still a little unclear to me how some of the PCI requirements are met in an environment like an IaaS Cloud provider where “applications” that we typically think of that traffic in PCI in-scope data don’t exist (but the infrastructure does,) but I would assume that AWS leverages other certifications such as SAS and ISO as a cumulative to petition the QSA for consideration during certification.  I’ll ask this question of AWS and see what I get back.

Enhanced by Zemanta

EMC [Private] Cloud Architect Certifications…Interesting.

December 6th, 2010 4 comments

EMC today launched two new private cloud architect certifications.  I find it intriguing that the certification is described as “Leverag[ing] ‘open’ curriculum training and certification focused on technology concepts and principles applicable to any vendor environment.”  I’ll be interested to see how applicable to Citrix and Hyper-V environments the courseware is… 😉

From their community blog:

Today we announced two new EMC Proven Professional certifications tracks. These advanced level tracks are targeted toward architects, designers, and consultants who are, or will be, responsible for designing highly virtualized cloud-ready infrastructures leading to the design of IT-as-a-Service environments for Private Cloud as well as for Service Providers.

  • Cloud Architect (EMCCA) certification is targeted toward architects who deliver virtualization and cloud designs based on business strategies encompassing all key technical domains (compute, storage, networking, applications, etc).
  • Data Center Architect (EMCDCA) certification is for architects and designers who provide detailed designs for information storage specific technical domains to complement, expand, and complete their overall virtualization and cloud design.

Both tracks are based on ‘open’ curriculum where the focus is on technology/principles rather than specific products (similar to ISM design).

We strongly believe that both these tracks meet a necessary requirement for organizations and individual professionals as they plan extensive virtualization and adoption of cloud computing…please do take some time and review the details of these new exciting tracks by visting the EMC Education Services Portal or downloading this brochure (pdf).

It’s taking me a while to click through the various PDF’s which explain the various levels and requirements for the EMC Cloud Architect (EMCCA) certifications:

  • EMCISA PREREQUISITE: INFORMATION STORAGE ASSOCIATE CERTIFICATION
  • EMCCA VIRTUALIZED INFRASTRUCTURE – SPECIALIST-LEVEL CERTIFICATION
  • EMCCAe IT-AS-A-SERVICE – EXPERT-LEVEL CERTIFICATION
I look forward to digesting this all and seeing where the Cloud Security Alliance’s CCSK (Certificate of Cloud Security Knowledge) aligns.
/Hoff
Enhanced by Zemanta

I’ll Say It Again: Security Is NOT the Biggest Barrier To Cloud…

December 6th, 2010 3 comments
Cloud computing icon
Image via Wikipedia

Nope.

Security is not the biggest barrier to companies moving to applications, information and services delivered using cloud computing.

What is?

Compliance.

See Cloud: Security Doesn’t Matter (Or, In Cloud, Nobody Can Hear You Scream) and You Can’t Secure The Cloud…

That means what one gives up in terms of direct operational control, one must gain back in terms of visibility and transparency (sort of like www.cloudaudit.org)

Discuss.

/Hoff

Enhanced by Zemanta

What’s The Problem With Cloud Security? There’s Too Much Of It…

October 17th, 2010 3 comments

Here’s the biggest challenge I see in Cloud deployment as the topic of security inevitably occurs in conversation:

There’s too much of it.

Huh?

More specifically, much like my points regarding networking in highly-virtualized multi-tenant environments — it’s everywhere — we’ve got the same problem with security.  Security is shot-gunned across the cloud landscape in a haphazard fashion…and the buck (pun intended) most definitely does not stop here.

The reality is that if you’re using IaaS, the lines of demarcation for the responsibility surrounding security may in one take seemed blurred but are in fact extremely well-delineated, and that’s the problem.  I’ve seen quite a few validated design documents outlining how to deploy “secure multi-tentant virtualized environments.”  One of them is 800 pages long.

Check out the diagram below.

I quickly mocked up an IaaS stack wherein you have the Cloud provider supplying, operating, managing and securing the underlying cloud hardware and software layers whilst the applications and information (contained within VM boundaries) are maintained by the consumer of these services.  The list of controls isn’t complete, but it gives you a rough idea of what gets focused on. Do you see some interesting overlaps?  How about gaps?

This is the issue; each one of those layers has security controls in it.  There is lots of duplication and there is lots of opportunity for things to be obscured or simply not accounted for at each layer.

Each of these layers and functional solutions is generally managed by different groups of people.  Each of them is generally managed by different methods and mechanisms.  In the case of IaaS, none of the controls at the hardware and software layers generally intercommunicate and given the abstraction provided as part of the service offering, all those security functions are made invisible to the things running in the VMs.

A practical issue is that the FW, VPN, IPS and LB functions at the hardware layer are completely separate from the FW, VPN, IPS and LB functions at the software layer which are in turn completely separate from the FW, VPN, IPS and LB functions which might be built into the VM’s (or virtual appliances) which sit stop them.

The security in the hardware is isolated from the security in the software which is isolated from the security in the workload.  You can, today, quite literally install the same capabilities up and down the stack without ever meeting in the middle.

That’s not only wasteful in terms of resources but incredibly prone to error in both construction, management and implementation (since at the core it’s all software, and software has defects.)

Keep in mind that at the provider level the majority of these security controls are focused on protecting the infrastructure, NOT the stuff atop it.  By design, these systems are blind to the workloads running atop them (which are often encrypted both at rest and in transit.)  In many cases this is why a provider may not be able to detect an “attack” beyond data such as flows/traffic.

To make things more interesting, in some cases the layer responsible for all that abstraction is now the most significant layer involved in securing the system as a whole and the fundamental security elements associated with the trust model we rely upon.

The hypervisor is an enormous liability; there’s no defense in depth when your primary security controls are provided by the (*ahem*) operating system provider.  How does one provide a compensating control when visibility/transparency [detective] are limited by design and there’s no easy way to provide preventative controls aside from the hooks the thing you’re trying to secure grants access to?

“Trust me” ain’t an appropriate answer.  We need better visibility and capabilities to robustly address this issue.  Unfortunately, there’s no standard for security ecosystem interoperability from a management, provisioning, orchestration or monitoring perspective even within a single stack layer.  There certainly isn’t across them.

In the case of Cloud providers who use commodity hardware with big, flat networks with little or no context for anything other than the flows/IP mappings running over them (thus the hardware layer is portrayed as truly commoditized,) how much better/worse do you think the overall security posture is of a consumer’s workload running atop this stack.  No, that’s not a rhetorical question.  I think the case could be argued either side of the line in the sand given the points I’ve made above.

This is the big suck.  Cloud security suffers from the exact same siloed security telemetry problems as legacy operational models…except now it does it at scale. This is why I’ve always made the case that one can’t “secure the Cloud” — at least not holistically — given this lego brick problem.   Everyone wants to make the claim that they’re technology is that which will be the first to solve this problem.  It ain’t going to happen. Not with the IaaS (or even PaaS) model, it won’t.

However, there is a big opportunity to move forward here.  How?  I’ll give you a hint.  It exists toward the left side of the diagram.

/Hoff

Enhanced by Zemanta

Hack The Stack Or Go On a Bender With a Vendor?

September 24th, 2010 4 comments
Cloud computing icon
Image via Wikipedia

I have the privilege of being invited around the world to talk with (and more importantly) listen to some of the biggest governments, enterprises and service providers about their “journey to cloud computing.”

I feel a bit like Kwai Chang Caine from the old series Kung-Fu at times; I wander about blind but full of self-assured answers to the questions I seek to ask, only to realize that asking them is more important than knowing the answer — and that’s the point.  Most people know the answers, they just don’t know how — or which — questions to ask.

Yes, it’s a Friday.  I always get a little philosophical on Fridays.

In the midst of all this buzz and churn, there’s a lot of talk but depending upon the timezone and what dialect of IT is spoken, not necessarily a lot of compelling action.  Frankly, there’s a lot of analysis paralysis as companies turn inward to ask questions of themselves about what cloud computing does or does not mean to them. (Ed: This comment seemed to suggest to some that cloud adoption was stalled. Not what I meant. I’ll clarify by suggesting that there is brisk uptake in many areas, but it’s diversified, split between many parallel paths I reference below; public and private deployments. It doesn’t mean it’s harmonious, however.)

There is, however, a recurring theme across geography, market segment, culture and technology adoption appetites; everyone is seriously weighing their options regarding where, how and with whom to make their investments in terms of building cloud computing infrastructure (and often platform) as-a-service strategy.  The two options, often discussed in parallel but ultimately bifurcated based upon explored use cases come down simply to this:

  1. Take any number of available open core or open source software-driven cloud stacks, commodity hardware and essentially engineer your own Amazon, or
  2. Use proprietary or closed source virtualization-nee-cloud software stacks, high-end “enterprise” or “carrier-class” converged compute/network/storage fabrics and ride the roadmap of the vendors

One option means you expect to commit to an intense amount of engineering and development from a software perspective, the other means you expect to focus on integration of other companies’ solutions.  Depending upon geography, it’s very, very unclear to enterprises of service providers what is the most cost-effective and risk-balanced route when use-cases, viability of solution providers and the ultimate consumers of these use-cases are conflated.

There is no one-size-fits-all solution.  There is no ‘THE Cloud.”

This realization is why most companies are spinning around, investigating the myriad of options they have available and the market is trying to sort itself out, polarized at one end of the spectrum or trying to squeeze out a happy balance somewhere in the middle.

The default position for many is to go with what they know and “bolt on” new technology both tactically (in absence of an actual long-term strategy) to revamp what they already have.

This is where the battle between “public” versus “private” cloud rages — where depending upon which side of the line you stand, the former heralds the “new” realized model of utility computing and the latter is seen as building upon virtualization and process automation to get more agile.  Both are realistically approaching a meet-in-the-middle strategy as frustration mounts, but it’s hard to really get anyone to agree on what that is.  That’s why we have descriptions like “hybrid” or “virtual private” clouds.

The underlying focus for this discussion is, as one might imagine, economics.  What architects (note I didn’t say developers*) quickly arrive at is that this is very much a “squeezing the balloon problem.” Both of these choices hold promise and generally cause copious amounts of iteration and passionate debate centered on topics like feature agility, compliance, liability, robustness, service levels, security, lock-in, utility and fungibility  of the solutions.  But it always comes back to cost.

Hard costs are attractive targets that are easily understood and highly visible.  Soft costs are what kill you.  The models by which the activity and operational flow-through — and ultimate P&L accountability of IT — are still black magic.

The challenge is how those costs are ultimately modeled and accounted for and how to appropriately manage risk. Nobody wants the IT equivalent of credit-default swaps where investments are predicated on a house of cards and hand-waving and at the same time, nobody wants to be the guy whose obituary reads “didn’t get fired for buying IBM.”

Interestingly, the oft-cited simplicity of the “CapEx vs. OpEx” discussion isn’t so simple in hundred year old companies whose culture is predicated upon the existence of processes and procedures whose ebb and flow quite literally exist on the back of TPM reports.  You’d think that the way many of these solutions are marketed — both #1 and #2 above — that we’ve reached some sort of capability/maturity model inflection point where either are out of diapers.

If this were the case, these debates wouldn’t happen and I wouldn’t be writing this blog.  There are many, many tradeoffs to be made here. It’s not a simple exercise, no matter who it is you ask — vendors excluded 😉

Ultimately these discussions — and where these large companies and service providers with existing investment in all sorts of solutions (including previous generations of things now called cloud) are deciding to invest in the short term — come down to the following approaches to dealing with “rolling your own” or “integrating pre-packaged solutions”:

  1. Keep a watchful eye on the likes of mass-market commodity cloud providers such as Amazon and Google. Use (enterprise) and/or emulate the capabilities (enterprise and service providers) of these companies in opportunistic and low-risk engagements which distribute/mitigate risk by targeting non-critical applications and information in these services.  Move for short-term success while couching wholesale swings in strategy with “pragmatic” or guarded optimism.
    .
  2. Distract from the back-end fracas by focusing on the consumption models driven by the consumerization of IT that LOB and end users often define as cloud.  In other words, give people iPhones, use SaaS services that enrich user experience, don’t invest in any internal infrastructure to deliver services and call it a success while trying to figure out what all this really means, long term.
    .
  3. Stand up pilot projects which allow dabbling in both approaches to see where the organizational, operational, cultural and technological landmines are buried.  Experiment with various vendors’ areas of expertise and functionality based upon the feature/compliance/cost see-saw.
    .
  4. Focus on core competencies and start building/deploying the first iterations of “infrastructure 2.0” with converged fabrics and vendor-allied pre-validated hardware/software, vote with dollars on cloud stack adoption, contribute to the emergence/adoption of “standards” based upon use and quite literally *hope* that common formats/packaging/protocols will arrive at portability and ultimately interoperability of these deployment models.
    .
  5. Drive down costs and push back by threatening proprietary hardware/software vendors with the “fact” that open core/open source solutions are more cost-effective/efficient and viable today whilst trying not to flinch when they bring up item #2 questioning where and how you should be investing your money and what your capabilities really are is it relates to development and support.  React to that statement by threatening to move all your apps atop  someone elses’ infrastructure. Try not to flinch again when you’re reminded that compliance, security, SLA’s and legal requirements will prevent that.  Rinse, lather, repeat.
    .
  6. Ride out the compliance, security, trust and chasm-crossing comfort gaps, hedging bets.

If you haven’t figured it out by now, it’s messy.

If I had to bet which will win, I’d put my money on…<carrier lost>

/Hoff

*Check out Bernard Golden’s really good post “The Truth About What Really Runs On Amazon” for some insight as to *who* and *what* is running in public clouds like AWS.  The developers are leading the charge.  Often times they are disconnected from the processes I discuss above, but that’s another problem entirely, innit?

Enhanced by Zemanta
Categories: Cloud Computing Tags: