Search Results

Keyword: ‘jericho forum’

Network Security is Dead…It’s All About the Host.

May 28th, 2007 6 comments

Securitycomputer2No, not entirely as it’s really about the data, but
I had an epiphany last week. 

I didn’t get any on me, but I was really excited about the — brace yourself — future of security in a meeting I had with Microsoft.  It reaffirmed my belief that while some low-hanging security fruit will be picked off by the network, the majority of the security value won’t be delivered by it.

I didn’t think I’d recognize just how much of it — in such a short time — will ultimately make its way back into the host (OS,) and perhaps you didn’t either.

We started with centralized host-based computing, moved to client-server.  We’ve had Web1.0, are in the  beginnings of WebX.0 and I ultimately believe that we’re headed back to a centralized host-based paradigm now that the network transport is fast, reliable and cheap.

That means that a bunch of the stuff we use today to secure the "network" will gravitate back towards the host. I’ve used Scott McNealy’s mantra as he intended it to in order to provide some color to conversations before, but I’m going to butcher it here. 

While I agree that in abstract the "Network is the Computer," in order to secure it, you’re going to have to treat the "network" like an OS…hard to do.   That’s why I think more and more security will make its way back to the actual
"computer" instead.

So much of the strategy linked to large security vendors sees an increase in footprint back on the host.  It’s showing back up there today in the guise of AV, HIPS, configuration management, NAC and Extrusion Prevention, but it’s going to play a much, much loftier role as time goes on as the level of interaction and interoperability must increase.  Rather than put 10+ agents on a box, imagine if that stuff was already built in?

Heresy, I suppose.

I wager that the "you can’t trust the endpoint" and "all security will make its way into the switch" crowds will start yapping on this point, but before that happens, let me explain…

The Microsoft Factor

Vista_box_2
I was fortunate enough to sit down with some of the key players in Microsoft’s security team last week and engage in a lively bit of banter regarding some both practical and esoteric elements of where security has been, is now and will be in the near future. 

On the tail of Mr. Chambers’ Interop keynote, the discussion was all abuzz regarding collaboration and WebX.0 and the wonders that will come of the technology levers in the near future as well as the, ahem, security challenges that this new world order will bring.  I’ll cover that little gem in another blog entry.

Some of us wanted to curl up into a fetal position.  Others saw a chance to correct material defects in the way in which the intersection of networking and security has been approached.  I think the combination of the two is natural and healthy and ultimately quite predictable in these conversations.

I did a bit of both, honestly.

As you can guess, given who I was talking to, much of what was discussed found its way back to a host-centric view of security with a heavy anchoring in the continued evolution of producing more secure operating systems, more secure code, more secure protocols and strong authentication paired with encryption.

I expected to roll my eyes a lot and figured that our conversation would gravitate towards UAC and that a bulk-helping of vapor functionality would be dispensed with the normal disclaimers urging "…when it’s available one day" as a helping would be ladled generously into the dog-food bowls the Microsofties were eating from.

I am really glad I was wrong, and it just goes to show you that it’s important to consider a balanced scorecard in all this; listen with two holes, talk with one…preferably the correct one šŸ˜‰

I may be shot for saying this in the court of popular opinion, but I think Microsoft is really doing a fantastic job in their renewed efforts toward improving security.  It’s not perfect, but the security industry is such a fickle and bipolar mistress — if you’re not 100% you’re a zero.

After spending all this time urging people that the future of security will not be delivered in the network proper, I have not focused enough attention on the advancements that are indeed creeping their way into the OS’s toward a more secure future as  this inertia orthogonally reinforces my point.

Yes, I work for a company that provides network-centric security offerings.  Does this contradict the statement I just made?  I don’t think so, and neither did the folks from Microsoft.  There will always be a need to consolidate certain security functionality that does not fit within the context of the host — at least within an acceptable timeframe as the nature of security continues to evolve.  Read on.

The network will become transparent.  Why?

In this brave new world, mutually-authenticated and encrypted network communications won’t be visible to the majority of the plumbing that’s transporting it, so short of the specific shunts to the residual overlay solutions that will still be present to the network in forms of controls that will not make their way to the host, the network isn’t going to add much security value at all.

The Jericho EffectJerichoeps_2

What I found interesting is that I’ve enjoyed similar discussions with the distinguished fellows of the Jericho Forum wherein after we’ve debated the merits of WHAT you might call it, the notion of HOW "deperimeterization," "reperimeterization," (or my favorite) "radical externalization,"  weighs heavily on the evolution of security as we know it.

I have to admit that I’ve been a bit harsh on the Jericho boys before, but Paul Simmonds and I (or at least I did) came to the realization that my allergic reaction wasn’t to the concepts at hand, but rather the abrasive marketing of the message.  Live and learn.

Both sets of conversations basically see the pendulum effect of security in action in this oversimplification of what Jericho posits is the future of security and what Microsoft can deliver — today:

Take a host with a secured OS, connect it into any network using whatever means you find
appropriate, without regard for having to think about whether you’re on the "inside" or "outside." Communicate securely, access and exchange data in policy-defined "zones of trust" using open, secure, authenticated and encrypted protocols.

If you’re interested in the non-butchered more specific elements of the Jericho Forum’s "10 Commandments," see here.

What I wasn’t expecting in marrying these two classes of conversation is that this future of security is much closer and notably much more possible than I readily expected…with a Microsoft OS, no less.   In fact, I got a demonstration of it.  It may seem like no big deal to some of you, but the underlying architectural enhancements to Microsoft’s Vista and Longhorn OS’s are a fantastic improvement on what we have had to put up thus far.

One of the Microsoft guys fired up his laptop with a standard-issue off-the-shelf edition of Vista,  authenticated with his smartcard, transparently attached to the hotel’s open wireless network and then took me on a tour of some non-privileged internal Microsoft network resources.

Then he showed me some of the ad-hoc collaborative "People Near Me" peer2peer tools built into Vista — same sorts of functionality…transparent, collaborative and apparently quite secure (gasp!) all at the same time.

It was all mutually authenticated and encrypted and done so transparently to him.

He didn’t "do" anything; no VPN clients, no split-brain tunneling, no additional Active-X agents, no SSL or IPSec shims…it’s the integrated functionality provided by both IPv6 and IPSec in the NextGen IP stack present in Vista.

And in his words "it just works."   Yes it does.

He basically established connectivity and his machine reached out to an reachable read-only DC (after auth. and with encryption) which allowed him to transparently resolve "internal" vs. "external" resources.  Yes, the requirements of today expect that the OS must still evolve to prevent exploit of the OS, but this too shall become better over time.

No, it obviously doesn’t address what happens if you’re using a Mac or Linux, but the pressure will be on to provide the same sort of transparent, collaborative and secure functionality across those OS’s, too.

Allow me my generalizations — I know that security isn’t fixed and that we still have problems, but think of this as a half-glass full, willya!?

One of the other benefits I got form this conversation is the reminder that as Vista and Longhorn default to IPv6 natively (they can do both v4&v6 dynamically,) as enterprises upgrade, the network hardware and software (and hence the existing security architecture) must also be able to support IPv6 natively.  It’s not just the government pushing v6, large enterprises are now standardizing on it, too.

Here are some excellent links describing the Nextgen IP stack in Vista, the native support for IPSec (goodbye VPN market,) and IPv6 support.

Funny how people keep talking about Google being a threat to Microsoft.  I think that the network giants like Cisco might have their hands full with Microsoft…look at how each of them are maneuvering.

/Hoff
{ Typing this on my Mac…staring @ a Vista Box I’m waiting to open to install within Parallels šŸ˜‰ }

Security: “Built-in, Overlay or Something More Radical?”

May 10th, 2007 No comments

Networkpill
I was reading Joseph Tardo’s (Nevis Networks) new Illuminations blog and found the topic of his latest post ""Built-in, Overlay or Something More Radical?" regarding the possible future of network security quite interesting.

Joseph (may I call you Joseph?) recaps the topic of a research draft from Stanford funded by the "Stanford Clean Slate Design for the Internet" project that discusses an approach to network security called SANE.   The notion of SANE (AKA Ethane) is a policy-driven security services layer that utilizes intelligent centrally-located services to replace many of the underlying functions provided by routers, switches and security products today:

Ethane is a new architecture for enterprise networks which provides a powerful yet simple management model and strong security guarantees.  Ethane allows network managers to define a single, network-wide, fine-grain policy, and then enforces it at every switch.  Ethane policy is defined over human-friendly names (such as "bob, "payroll-server", or "http-proxy) and  dictates who can talk to who and in which manner.  For example, a policy rule may specify that all guest users who have not authenticated can only use HTTP and that all of their traffic must traverse a local web proxy.

Ethane has a number of salient properties difficult to achieve
with network technologies today.  First, the global security policy is enforced at each switch in a manner that is resistant to poofing.  Second, all packets on an Ethane network can be
attributed back to the sending host and the physical location in
which the packet entered the network.  In fact, packets collected
in the past can also be attributed to the sending host at the time the packets were sent — a feature that can be used to aid in
auditing and forensics.  Finally, all the functionality within
Ethane is provided by very simple hardware switches.
      

The trick behind the Ethane design is that all complex
functionality, including routing, naming, policy declaration and
security checks are performed by a central
controller (rather than
in the switches as is done today).  Each flow on the network must
first get permission from the controller which verifies that the
communicate is permissible by the network policy.  If the controller allows a flow, it computes a route for the flow to
take, and adds an entry for that flow in each of the switches
along the path.
      

With all complex function subsumed by the controller, switches in
Ethane are reduced to managed flow tables whose entries can only be populated by the controller (which it does after each succesful permission check).  This allows a very simple design for Ethane
      switches using only SRAM (no power-hungry TCAMS) and a little bit
of logic.

   

I like many of the concepts here, but I’m really wrestling with the scaling concerns that arise when I forecast the literal bottlenecking of admission/access control proposed therein.

Furthermore, and more importantly, while SANE speaks to being able to define who "Bob"  is and what infrastructure makes up the "payroll server,"  this solution seems to provide no way of enforcing policy based on content in context of the data flowing across it.  Integrating access control with the pseudonymity offered by integrating identity management into policy enforcement is only half the battle.

The security solutions of the future must evolve to divine and control not only vectors of transport but also the content and relative access that the content itself defines dynamically.

I’m going to suggest that by bastardizing one of the Jericho Forum’s commandments for my own selfish use, the network/security layer of the future must ultimately respect and effect disposition of content based upon the following rule (independent of the network/host):

Access to data should be controlled by security attributes of the data itself.

  • Attributes can be held within the data (DRM/Metadata) or could be a separate system.
  • Access / security could be implemented by encryption.
  • Some data may have ā€œpublic, non-confidentialā€ attributes.
  • Access and access rights have a temporal component. 

 

Deviating somewhat from Jericho’s actual meaning, I am intimating that somehow, somewhere, data must be classified and self-describe the policies that govern how it is published and consumed and ultimately this security metadata can then be used by the central policy enforcement mechanisms to describe who is allowed to access the data, from where, and where it is allowed to go.

…Back to he topic at hand, SANE:

As Joseph alluded, SANE would require replacing (or not using much of the functionality of) currently-deployed routers, switches and security kit.  I’ll let your imagination address the obvious challenges with this design.

Without delving deeply, I’ll use Joseph’s categorization of ā€œinteresting-but-impracticalā€

/Hoff

On the Draft NIST Working Definition Of Cloud Computing…

May 8th, 2009 6 comments

How many of you have seen the Draft NIST Working Definition Of Cloud Computing?Ā  It appears to have been presented to government CIO’s at the recent Federal CIO Cloud Computing Summit in Washington DC last week.

I saw the draft NIST Working Definition of Cloud Computing shown below (copied from Reuven Cohen’s blog) about a month and a half ago, but have not seen it presented in its entirety outside of the copy I was sent until now and didn’t know how/when it would be made “public,” so I didn’t blog directly about its content.

The reason I was happy to see it when I did was that I had just finished writing the draft of the Cloud Security Alliance Security Guidance for Critical Areas of Focus In Cloud Computing — specifically the section on Cloud architecture and found that there was a very good alignment between our two independent works (much like with the Jericho Cloud Cube model.)

In fact, you’ll see that I liked the definitions for the SPI model components so much, I used them and directly creditedĀ  Peter Mell from NIST, one of the authors of the work.

I sent a very early draft of my work along with some feedback to Peter on some of the definitions, specifically since I noted some things I did not fully agree with in the deployment models sections. The “community” clouds seem to me as being an abstraction or application of of private clouds. I have a “managed cloud” instead.Ā  Ah, more fuel for good discussion.

I hoped we could have discussed them prior to publishing either of the documents, but we passed in the ether as it seems.

At any rate, here’s the draft from our wily Canadian friend:

4-24-09

Peter Mell and Tim Grance – National Institute of Standards and Technology, Information Technology Laboratory

Note 1: Cloud computing is still an evolving paradigm. Its definitions, use cases, underlying technologies, issues, risks, and benefits will be refined in a spirited debate by the public and private sectors. These definitions, attributes, and characteristics will evolve and change over time.

Note 2: The cloud computing industry represents a large ecosystem of many models, vendors, and market niches. This definition attempts to encompass all of the various cloud approaches.

Definition of Cloud Computing:

Cloud computing is a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is comprised of five key characteristics, three delivery models, and four deployment models.

Key Characteristics:

  • On-demand self-service. A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed without requiring human interaction with each serviceā€™s provider.
  • Ubiquitous network access. Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).
  • Location independent resource pooling. The providerā€™s computing resources are pooled to serve all consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. The customer generally has no control or knowledge over the exact location of the provided resources. Examples of resources include storage, processing, memory, network bandwidth, and virtual machines.
  • Rapid elasticity. Capabilities can be rapidly and elastically provisioned to quickly scale up and rapidly released to quickly scale down. To the consumer, the capabilities available for rent often appear to be infinite and can be purchased in any quantity at any time.
  • Pay per use. Capabilities are charged using a metered, fee-for-service, or advertising based billing model to promote optimization of resource use. Examples are measuring the storage, bandwidth, and computing resources consumed and charging for the number of active user accounts per month. Clouds within an organization accrue cost between business units and may or may not use actual currency.

Note: Cloud software takes full advantage of the cloud paradigm by being service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability.

Delivery Models:

  • Cloud Software as a Service (SaaS). The capability provided to the consumer is to use the providerā€™s applications running on a cloud infrastructure and accessible from various client devices through a thin client interface such as a Web browser (e.g., web-based email). The consumer does not manage or control the underlying cloud infrastructure, network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.
  • Cloud Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created applications using programming languages and tools supported by the provider (e.g., java, python, .Net). The consumer does not manage or control the underlying cloud infrastructure, network, servers, operating systems, or storage, but the consumer has control over the deployed applications and possibly application hosting environment configurations.
  • Cloud Infrastructure as a Service (IaaS). The capability provided to the consumer is to rent processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly select networking components (e.g., firewalls, load balancers).

Deployment Models:

  • Private cloud. The cloud infrastructure is owned or leased by a single organization and is operated solely for that organization.
  • Community cloud. The cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).
  • Public cloud. The cloud infrastructure is owned by an organization selling cloud services to the general public or to a large industry group.
  • Hybrid cloud. The cloud infrastructure is a composition of two or more clouds (internal, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting).

Each deployment model instance has one of two types: internal or external. Internal clouds reside within an organizations network security perimeter and external clouds reside outside the same perimeter.

Now, Reuven Cohen mentioned on his blog:

In creating this definition, NIST consulted extensively with the private sector including a wide range of vendors, consultants and industry pundants (sic!) including your (sic!) truly. Below is the draft NIST working definition of Cloud Computing. I should note, this definition is a work in progress and therefore is open to public ratification & comment. The initial feedback was very positive from the federal CIO’s who were presented it yesterday in DC. Baring any last minute lobbying I doubt we’ll see many more major revisions.

…which is interesting, because for being “…open to public ratification & comment,” I can’t seem to find it anywhere except for references to its creation as a deliverable in FY09 in a presentation from December, 2008.Ā  I searched NIST’s site, but perhaps I’m just having a bad search day.

Clearly at least I have a couple of comments.Ā  I could send them to Peter directly, but I’d rather discuss them openly if that’s appropriate and there is a forum to do so.Ā  At this rate, it looks as though it may be too late, however.

/Hoff