Archive

Archive for the ‘Virtualization’ Category

Back To The Future: Network Segmentation & More Moaning About Zoning

July 16th, 2012 5 comments

A Bit Of Context…

This image was selected as a picture of the we...

(Photo credit: Wikipedia)A Bit Of Context…

The last 3 years have been very interesting when engaging with large enterprises and service providers as they set about designing, selecting and deploying their “next generation” network architecture. These new networks are deployed in timescales that see them collide with disruptive innovation such as fabrics, cloud, big data and DevOps.

In most cases, these network platforms must account for the nuanced impact of virtualized design patterns, refreshes of programmatic architecture and languages, and the operational model differences these things introduce.  What’s often apparent is that no matter how diligent the review, by the time these platforms are chosen, many tradeoffs are made — especially when it comes to security and compliance — and we arrive at the old adage: “You can get fast, cheap or secure…pick two.”

…And In the Beginning, There Was Spanning Tree…

The juxtaposition of flatter and flatter physical networks, nee “fabrics” (compute, network and storage,) with what seems to be a flip-flop transition between belief systems and architects who push for either layer 2 or layer 3 (or encapsulated versions thereof) segmentation at the higher layers is again aggravated by continued push for security boundary definition that yields further segmentation based on policy at the application and information layer.

So what we end up with is the benefits of flatter, any-to-any connectivity at the physical networking layer with a “software defined” and virtualized networking context floating both alongside (Nicira, BigSwitch, OpenFlow) as well as atop it (VMware, Citrix, OpenStack Quantum, etc.) with a bunch of protocols ladled on like some protocol gravy blanketing the Chicken Fried Steak that represents the modern data center.

Oh!  You Mean the Cloud…

Now, there are many folks who don’t approach it this way, and instead abstract away much of what I just described.  In Amazon Web Services’ case as a service provider, they dumb down the network sufficiently and control the abstracted infrastructure to the point that “flatness” is the only thing customers get and if you’re going to run your applications atop, you must keep it simple and programmatic in nature else risk introducing unnecessary complexity into the “software stack.”

The customers who then depend upon these simplified networking services must then absorb the gaps introduced by a lack of features by architecturally engineering around them, becoming more automated, instrumented and programmatic in nature or add yet another layer of virtualized (and generally encrypted) transport and execution above them.

This works if you’re able to engineer your way around these gaps (or make them less relevant,) but generally this is where segmentation becomes an issue due to security and compliance design patterns which depend on the “complexity” introduced by the very flexible networking constructs available in most enterprise of SP networks.

It’s like a layered cake that keeps self-frosting.

Software Defined Architecture…

You can see the extreme opportunity for Software Defined *anything* then, can’t you? With SDN, let the physical networks NOT be complex but rather more simple and flat and then unify the orchestration, traffic steering, service insertion and (even) security capabilities of the physical and virtual networks AND the virtualization/cloud orchestration layers (from the networking perspective) into a single intelligent control plane…

That’s a big old self-frosting cake.

Basically, this is what AWS has done…but all that intelligence provided by the single pane of glass is currently left up to the app owner atop them.  That’s the downside.  Those sufficiently enlightened AWS’ customers are aware generally  of this and understand the balance of benefits and limitations of this path.

In an enterprise environment, however, it’s a timing game between the controller vendors, the virtualization/cloud stack providers, the networking vendors, and security vendors …each trying to offer up this capability either as an “integrated” capability or as an overlay…all under the watchful eye of the auditor who is generally unmotivated, uneducated and unnerved by all this new technology — especially since the compliance frameworks and regulatory elements aren’t designed to account for these dramatic shifts in architecture or operation (let alone the threat curve of advanced adversaries.)

Back To The Future…Hey, Look, It’s Token Ring and DMZs!

As I sit with these customers who build these nextgen networks, the moment segmentation comes up, the elegant network and application architectures rapidly crumble into piles of asset-based rubble as what happens next borders on the criminal…

Thanks to compliance initiatives — PCI is a good example — no matter how well scoped, those flat networks become more and more logically hierarchical.  Because SDN is still nascent and we’re lacking that unified virtualized network (and security) control plane, we end up resorting back to platform-specific “less flat” network architectures in both the physical and virtual layers to achieve “enclave” like segmentation.

But with virtualization the problem gets more complex as in an attempt to be agile, cost efficient and in order to bring data to the workloads to reduce heaving lifting of the opposite approach, out-of-scope assets can often (and suddenly) be co-resident with in-scope assets…traversing logical and physical constructs that makes it much more difficult to threat model since the level of virtualized context supports differs wildly across these layers.

Architects are then left to think how they can effectively take all the awesome performance, agility, scale and simplicity offered by the underlying fabrics (compute, network and storage) and then layer on — bolt on — security and compliance capabilities.

What they discover is that it’s very, very, very platform specific…which is why we see protocols such as VXLAN and NVGRE pop up to deal with them.

Lego Blocks and Pig Farms…

These architects then replicate the design patterns with which they are familiar and start to craft DMZs that are logically segmented in the physical network and then grafted on to the virtual.  So we end up with relying on what Gunnar Petersen and I refer to as the “SSL and Firewall” lego block…we front end collections of “layer 2 connected” assets based on criticality or function, many of which stretched across these fabrics, and locate them behind layer 3 “firewalls” which provide basic zone-based isolation and often VPN connectivity between “trusted” groups of other assets.

In short, rather than build applications that securely authenticate, communicate — or worse yet, even when they do — we pigpen our corralled assets and make our estate fatter instead of flatter.  It’s really a shame.

I’ve made the case in my “Commode Computing” presentation that one of the very first things that architects need to embrace is the following:

…by not artificially constraining the way in which we organize, segment and apply policy (i.e. “put it in a DMZ”) we can think about how design “anti-patterns” may actually benefit us…you can call them what you like, but we need to employ better methodology for “zoning.”

These trust zones or enclaves are reasonable in concept so long as we can ultimately further abstract their “segmentation” and abstract the security and compliance policy requirements by expressing policy programmatically and taking the logical business and functional use-case PROCESSES into consideration when defining, expressing and instantiating said policy.

You know…understand what talks to what and why…

A great way to think about this problem is to apply the notion of application mobility — without VM containers — and how one would instantiate a security “policy” in that context.  In many cases, as we march up the stack to distributed platform application architectures, we’re not able to depend upon the “crutch” that hypervisors or VM packages have begun to give us in legacy architectures that have virtualization grafted onto them.

Since many enterprises are now just starting to better leverage their virtualized infrastructure, there *are* some good solutions (again, platform specific) that unify the physical and virtual networks from a zoning perspective, but the all-up process-driven, asset-centric (app & information) view of “policy” is still woefully lacking, especially in heterogeneous environments.

Wrapping Up…

In enterprise and SP environments where we don’t have the opportunity to start anew, it often feels like we’re so far off from this sort of capability because it requires a shift that makes software defined networking look like child’s play.  Most enterprises don’t do risk-driven, asset-centric, process-mapped modelling, [and SP’s are disconnected from this,] so segmentation falls back to what we know: DMZs with VLANs, NAT, Firewalls, SSL and new protocol band-aids invented to cover gaping arterial wounds.

In environments lucky enough to think about and match the application use cases with the highly-differentiated operational models that virtualized *everything* brings to bear, it’s here today — but be prepared and honest that the vendor(s) you chose must be strategic and the interfaces between those platforms and external entities VERY well defined…else you risk software defined entropy.

I wish I had more than the 5 minutes it took to scratch this out because there’s SO much to talk about here…

…perhaps later.

Related articles

Enhanced by Zemanta

PrivateCore: Another Virtualization-Enabled Security Solution Launches…

June 21st, 2012 No comments

On the heels of Bromium’s coming-out party yesterday at Gigamon’s Structure conference, PrivateCore — a company founded by VMware vets Oded Horovitz and Carl Waldspurger and Google’s Steve Weis — announced a round of financing and what I interpret as a more interesting and focused Raison d’être.

Previously in videos released by Oded, he described the company’s focus around protecting servers (cloud, otherwise) against physical incursion whilst extracting contents from memory, etc. where physical access is required.

From what I could glean, the PrivateCore solution utilizes encryption and CPU cache (need to confirm) to provide memory isolation to render these attack vectors moot.

What’s interesting is the way in which PrivateCore is now highlighting the vehicle for their solution; a “hardened hypervisor.”

It will be interesting to see how well they can market this approach/technology (and to whom,) what sort of API/management planes their VMM provides and how long they stand-alone before being snapped up — perhaps even by VMware or Citrix.

More good action (and $2.25M in funding) in the virtual security space.

/Hoff

Enhanced by Zemanta

Elemental: Leveraging Virtualization Technology For More Resilient & Survivable Systems

June 21st, 2012 Comments off

Yesterday saw the successful launch of Bromium at Gigamon’s Structure conference in San Francisco.

I was privileged to spend some stage time with Stacey Higginbotham and Simon Crosby (co-founder, CTO, mentor and good friend) on stage after Simon’s big reveal of Bromium‘s operating model and technology approach.

While product specifics weren’t disclosed, we spent some time chatting about Bromium’s approach to solving a particularly tough set of security challenges with a focus on realistic outcomes given the advanced adversaries and attack methodologies in use today.

At the heart of our discussion* was the notion that in many cases one cannot detect let alone prevent specific types of attacks and this requires a new way of containing the impact of exploiting vulnerabilities (known or otherwise) that are as much targeting the human factor as they are weaknesses in underlying operating systems and application technologies.

I think Kurt Marko did a good job summarizing Bromium in his article here, so if you’re interested in learning more check it out. I can tell you that as a technology advisor to Bromium and someone who is using the technology preview, it lives up to the hype and gives me hope that we’ll see even more novel approaches of usable security leveraging technology like this.  More will be revealed as time goes on.

That said, with productization details purposely left vague, Bromium’s leveraged implementation of Intel’s VT technology and its “microvisor” approach brought about comments yesterday from many folks that reminded them of what they called “similar approaches” (however right/wrong they may be) to use virtualization technology and/or “sandboxing” to provide more “secure” systems.  I recall the following in passing conversation yesterday:

  • Determina (VMware acquired)
  • Green Borders (Google acquired)
  • Trusteer
  • Invincea
  • DeepSafe (Intel/McAfee)
  • Intel TXT w/MLE & hypervisors
  • Self Cleansing Intrusion Tolerance (SCIT)
  • PrivateCore (Newly launched by Oded Horovitz)
  • etc…

I don’t think Simon would argue that the underlying approach of utilizing virtualization for security (even for an “endpoint” application) is new, but the approach toward making it invisible and transparent from a user experience perspective certainly is.  Operational simplicity and not making security the user’s problem is a beautiful thing.

Here is a video of Simon and my session “Secure Everything.

What’s truly of interest to me — and based on what Simon said yesterday — the application of this approach could be just at home in a “server,” cloud or mobile application as it is on a classical desktop environment.  There are certainly dependencies (such as VT) today, but the notion that we can leverage virtualization for better resilience, survivability and assurance for more “trustworthy” systems is exciting.

I for one am very excited to see how we’re progressing from “bolt on” to more integrated approaches in our security models. This will bear fruit as we become more platform and application-centric in our approach to security, allowing us to leverage fundamentally “elemental” security components to allow for more meaningfully trustworthy computing.

/Hoff

* The range of topics was rather hysterical; from the Byzantine General’s problem to K/T Boundary extinction-class events to the Mexican/U.S. border fence, it was chock full of analogs 😉

 

Enhanced by Zemanta

Incomplete Thought: On Horseshoes & Hand Grenades – Security In Enterprise Virt/Cloud Stacks

May 22nd, 2012 7 comments

It’s not really *that* incomplete of a thought, but I figure I’d get it down on vPaper anyway…be forewarned, it’s massively over-simplified.

Over the last five years or so, I’ve spent my time working with enterprises who are building and deploying large scale (relative to an Enterprise’s requirements, that is) virtualized data centers and private cloud environments.

For the purpose of this discussion, I am referring to VMware-based deployments given the audience and solutions I will reference.

To this day, I’m often shocked with regard to how many of these organizations that seek to provide contextualized security for intra- and inter-VM traffic seem to position an either-or decision with respect to the use of physical or virtual security solutions.

For the sake of example, I’ll reference the architectural designs which were taken verbatim from my 2008 presentationThe Four Horsemen of the Virtualization Security Apocalypse.

If you’ve seen/read the FHOTVA, you will recollect that there are many tradeoffs involved when considering the use of virtual security appliances and their integration with physical solutions.  Notably, an all-virtual or all-physical approach will constrain you in one form or another from the perspective of efficacy, agility, and the impact architecturally, operationally, or economically.

The topic that has a bunch of hair on it is where I see many enterprises trending: obviating virtual solutions and using physical appliances only:

 

…the bit that’s missing in the picture is the external physical firewall connected to that physical switch.  People are still, in this day and age, ONLY relying on horseshoeing all traffic between VMs (in the same or different VLANs) out of the physical cluster machine and to an external firewall.

Now, there are many physical firewalls that allow for virtualized contexts, zoning, etc., but that’s really dependent upon dumping trunked VLAN ports from the firewall/switches into the server and then “extending” virtual network contexts, policies, etc. upstream in an attempt to flatten the physical/virtual networks in order to force traffic through a physical firewall hop — sometimes at layer 2, sometimes at layer 3.

It’s important to realize that physical firewalls DO offer benefits over the virtual appliances in terms of functionality, performance, and some capabilities that depend on hardware acceleration, etc. but from an overall architectural positioning, they’re not sufficient, especially given the visibility and access to virtual networks that the physical firewalls often do not have if segregated.

Here’s a hint, physical-only firewall solutions alone will never scale with the agility required to service the virtualized workloads that they are designed to protect.  Further, a physical-only solution won’t satisfy the needs to dynamically provision and orchestrate security as close to the workload as possible, when the workloads move the policies will generally break, and it will most certainly add latency and ultimately hamper network designs (both physical and virtual.)

Virtual security solutions — especially those which integrate with the virtualization/cloud stack (in VMware’s case, vCenter & vCloud Director) — offer the ability to do the following:

…which is to say that there exists the capability to utilize  virtual solutions for “east-west” traffic and physical solutions for “north-south” traffic, regardless of whether these VMs are in the same or different VLAN boundaries or even across distributed virtual switches which exist across hypervisors on different physical cluster members.

For east-west traffic (and even north-south models depending upon network architecture) there’s no requirement to horseshoe traffic physically. 

It’s probably important to mention that while the next slide is out-of-date from the perspective of the advancement of VMsafe APIs, there’s not only the ability to inject a slow-path (user mode) virtual appliance between vSwitches, but also utilize a set of APIs to instantiate security policies at the hypervisor layer via a fast path kernel module/filter set…this means greater performance and the ability to scale better across physical clusters and distributed virtual switching:

Interestingly, there also exists the capability to actually integrate policies and zoning from physical firewalls and have them “flow through” to the virtual appliances to provide “micro-perimeterization” within the virtual environment, preserving policy and topology.

There are at least three choices for hypervisor management-integrated solutions on the market for these solutions today:

  • VMware vShield App,
  • Cisco VSG+Nexus 1000v and
  • Juniper vGW

Note that the solutions above can be thought of as “layer 2” solutions — it’s a poor way of describing them, but think “inter-VM” introspection for workloads in VLAN buckets.  All three vendors above also have, or are bringing to market, complementary “layer 3” solutions that function as virtual “edge” devices and act as a multi-function “next-hop” gateway between groups of VMs/applications (nee vDC.)  For the sake of brevity, I’m omitting those here (they are incredibly important, however.)

They (layer 2 solutions) are all reasonably mature and offer various performance, efficacy and feature set capabilities. There are also different methods for plumbing the solutions and steering traffic to them…and these have huge performance and scale implications.

It’s important to recognize that the lack of thinking about virtual solutions often seem to be based largely on ignorance of need and availability of solutions.

However, other reasons surface such as cost, operational concerns and compliance issues with security teams or assessors/auditors who don’t understand virtualized environments well enough.

From an engineering and architectural perspective, however, obviating them from design consideration is a disappointing concern.

Enterprises should consider a hybrid of the two models; virtual where you can, physical where you must.

If you’ve considered virtual solutions but chose not to deploy them, can you comment on why and share your thinking with us (even if it’s for the reasons above?)

/Hoff

Enhanced by Zemanta

QuickQuip: “Networking Doesn’t Need a VMWare” < tl;dr

January 10th, 2012 1 comment

I admit I was enticed by the title of the blog and the introductory paragraph certainly reeled me in with the author creds:

This post was written with Andrew Lambeth.  Andrew has been virtualizing networking for long enough to have coined the term “vswitch”, and led the vDS distributed switching project at VMware

I can only assume that this is the same Andrew Lambeth who is currently employed at Nicira.  I had high expectations given the title,  so I sat down, strapped in and prepared for a fire hose.

Boy did I get one…

27 paragraphs amounting to 1,601 words worth that basically concluded that server virtualization is not the same thing as network virtualization, stateful L2 & L3 network virtualization at scale is difficult and ultimately virtualizing the data plane is the easy part while the hard part of getting the mackerel out of the tin is virtualizing the control plane – statefully.*

*[These are clearly *my* words as the only thing fishy here was the conclusion…]

It seems the main point here, besides that mentioned above, is to stealthily and diligently distance Nicira as far from the description of “…could be to networking something like what VMWare was to computer servers” as possible.

This is interesting given that this is how they were described in a NY Times blog some months ago.  Indeed, this is exactly the description I could have sworn *used* to appear on Nicira’s own about page…it certainly shows up in Google searches of their partners o_O

In his last section titled “This is all interesting … but why do I care?,” I had selfishly hoped for that very answer.

Sadly, at the end of the day, Lambeth’s potentially excellent post appears more concerned about culling marketing terms than hammering home an important engineering nuance:

Perhaps the confusion is harmless, but it does seem to effect how the solution space is viewed, and that may be drawing the conversation away from what really is important, scale (lots of it) and distributed state consistency. Worrying about the datapath , is worrying about a trivial component of an otherwise enormously challenging problem

This smacks of positioning against both OpenFlow (addressed here) as well as other network virtualization startups.

Bummer.

Enhanced by Zemanta

Enter the Data Huggers…

November 27th, 2011 6 comments
VM (operating system)

Image via Wikipedia

A tale of yore:

And from whence the light of the heavens did shimmer upon them from the clouds above, yea the Server Huggers did at first protest.

Yet, as the virtual supplanted the corporeal — these shells of the buzzing contrivance —  they did wilt wearily as the compression of the rings unyieldingly did set upon them.

And strangely, once shod of their vestigial confines, they learned once again to rejoice and verily did they, of their own accord, assume the mantle of the make-believe server clan, and march forward lofting their standards high  to readily bear their mark of the VM.

But as the once earth-bound, now ethereal, ascended their offers to the heavens and their clouds, the vessels of their capital dissolved their curtailment once more.

The VMs became vapor, their service, the yield.  This tribe, once coupled to the shrines of their wanton packaging, became unencumbered once more.

Yet when these offers were set free upon the land, their services — compliant, supple and malleable — were embraced as a newfound purse, and the Clan of the App guarded them jealously once again, hoarding their prize from the undeserving.

Their reign, alas, did not last; their bastions eroded as the platforms that once gained them allegiance crumbled with the surfeit of consumption — their dispersion widespread and resources taxed.

Thus became the rule of the Data Clan whose merit lay in wait as the pretenders of the Cloud were forced to kneel in subservience.

For their data was big and they clutched it to their bosom as they once did their apps, VMs and carnal heat pumps…

It’s interesting to see how in such a short time we’ve seen the following progression:

Server Huggers > VM Huggers > App Huggers > Data Huggers

I wonder what’s next in the lineage of hugs?

/Hoff

Enhanced by Zemanta

The Killer App For OpenFlow and SDN? Security.

October 27th, 2011 8 comments

I spent yesterday at the PacketPushers/TechFieldDay OpenFlow Symposium. The event provided a good overview of what OpenFlow [currently] means, how it fits into the overall context of software-defined networking (SDN) and where it might go from here.

I’d suggest reading Ethan Banks’ (@ecbanks) overview here.

Many of us left the event, however, still wondering about what the “killer app” for OpenFlow might be.

Chatting with Ivan Pepelnjak (@ioshints) and Derrick Winkworth (@CloudToad,) I reiterated that selfishly, I’m still thrilled about the potential that OpenFlow and SDN can bring to security.  This was a topic only briefly skirted during the symposium as the ACL-like capabilities of OpenFlow were discussed, but there’s so much more here.

I wrote about this back in May (OpenFlow & SDN – Looking forward to SDNS: Software Defined Network Security):

… “security” needs to be as programmatic/programmable, agile, scaleable and flexible as the workloads (and stacks) it is designed to protect. “Security” in this context extends well beyond the network, but the network provides such a convenient way of defining templated containers against which we can construct and enforce policies across a wide variety of deployment and delivery models.

So as I watch OpenFlow (and Software Defined Networking) mature, I’m really, really excited to recognize the potential for a slew of innovative ways we can leverage and extend this approach to networking [monitoring and enforcement] in order to achieve greater visibility, scale, agility, performance, efficacy and reduced costs associated with security.  The more programmatic and instrumented the network becomes, the more capable our security options will become also.

I had to chuckle at a serendipitous tweet from a former Cisco co-worker (Stefan Avgoustakis, @savgoust) because it’s really quite apropos for this topic:

…I think he’s oddly right!

Frankly, if you look at what OpenFlow and SDN (and network programmability in general) gives an operator — the visibility and effective graph of connectivity as well as the multiple-tupule flow action capabilities, there are numerous opportunities to leverage the separation of control/data plane across both virtual and physical networks to provide better security capabilities in response to threats and at a pace/scale/radius commensurate with said threat.

To be able to leverage telemetry and flow tables in the controllers “centrally” and then “dispatch” the necessary security response on an as-needed basis to the network location ONLY that needs it, really does start to sound a lot like the old “immune system” analogy that SDN (self defending networks) promised.

The ability to distribute security capabilities more intelligently as a service layer which can be effected when needed — without the heavy shotgunned footprint of physical in-line devices or the sprawl of virtualized appliances — is truly attractive.  Automation for detection and ultimately prevention is FTW.

Bundling the capabilities delivered via programmatic interfaces and coupling that with ways of integrating the “network” and “applications” (of which security is one) produces some really neat opportunities.

Now, this isn’t just a classical “data center core” opportunity, either. How about the WAN/Edge?  Campus, branch…? Anywhere you have the need to deliver security as a service.

For non-security examples, check out Dave Ward’s (my Juniper colleague) presentation “Programmable Networks are SFW” where he details interesting use cases such as “service engineered paths,” “service appliance pooling,” “service specific topology,” “content request routing,” and “bandwidth calendaring” for example.

…think of the security ramifications and opportunities linked to those capabilities!

I’ve mocked up a couple of very interesting security prototypes using OpenFlow and some open source security components; from IDP to Anti-malware and the potential is exciting because OpenFlow — in conjunction with other protocols and solutions in the security ecosystem — could provide some of the missing glue necessary to deliver a constant,  but abstracted security command/control (nee API-like capability) across heterogenous infrastructure.

NOTE: I’m not suggesting that OpenFlow itself provide these security capabilities, but rather enable security solutions to take advantage of the control/data plane separation to provide for more agile and effective security.

If the potential exists for OpenFlow to effectively allow choice of packet forwarding engines and network virtualization across the spectrum of supporting vendors’ switches, it occurs to me that we could utilize it for firewalls, intrusion detection/prevention engines, WAFs, NAC, etc.

Thoughts?

Enhanced by Zemanta

A Contentious Question: The Value Proposition & Target Market Of Virtual Networking Solutions?

September 28th, 2011 26 comments

I have, what I think, is a simple question I’d like some feedback on:

Given the recent influx of virtual networking solutions, many of which are OpenFlow-based, what possible in-roads and value can they hope to offer in heavily virtualized enterprise environments wherein the virtual networking is owned and controlled by VMware?

Specifically, if the only third-party VMware virtual switch to date is Cisco’s and access to this platform is limited (if at all available) to startup players, how on Earth do BigSwitch, Nicira, vCider, etc. plan to insert themselves into an already contentious environment effectively doing mindshare and relevance battle with the likes of mainline infrastructure networking giants and VMware?

If you’re answer is “OpenFlow and OpenStack will enable this access,” I’ll follow along with a question that asks how long a runway these startups have hanging their shingle on relatively new efforts (mainly open source) that the enterprise is not a typically early adopter of.

I keep hearing notional references to the problems these startups hope to solve for the “Enterprise,” but just how (and who) do they think they’re going to get to consider their products at a level that gives them reasonable penetration?

Service providers, maybe?

Enterprises…?

It occurs to me that most of these startups are being built to be acquired by traditional networking vendors who will (or will not) adopt OpenFlow when significant enterprise dollars materialize in stacks that are not VMware-centric.

Not meaning to piss anyone off, but many of these startups’ business plans are shrouded in the mystical vail of “wait and see.”

So I do.

/Hoff

Ed: To be clear, this post isn’t about “OpenFlow” specifically (that’s only one of many protocols/approaches,) but rather the penetration of a virtual networking solution into a “closed” platform environment dominated by a single vendor.

If you want a relevant analog, look at the wasteland that represents the virtual security startups that tried to enter this space (and even the larger vendors’ solutions) and how long this has taken/fared.

If you read the comments below, you’ll see people start to accidentally tease out the real answer to the question I was asking…about the value of these virtual networking solutions providers.  The funny part is that despite the lack of comments from most of the startups I mention, it took Brad Hedlund (from Cisco) to recognize why I wrote the post, which is the following:

“The *real* reason I wrote this piece was to illustrate that really, these virtual networking startups are really trying to invade the physical network in virtual sheep’s clothing…”

…in short, the problem space they’re trying to solve is actually in the physical network, or more specifically bridge the gap between the two.

Enhanced by Zemanta

Flying Cars & Why The Hypervisor Is A Ride-On Lawnmower In Comparison

September 23rd, 2011 18 comments

I wrote a piece a while ago (in 2009) titled “Virtual Machines Are Part Of the Problem, Not the Solution…” in which I described the fact that hypervisors, virtualization and the packaging that supports them — Virtual Machines (VMs) — were actually kludges.

Specifically, VMs still contain the bloat (nee: cancer) that are operating systems and carry forward all of the issues and complexity (albeit now with more abstraction cowbell) that we already suffer.  Yes, it brings a lot of GOOD stuff, too, but tolerate the analog for a minute, m’kay.

Moreover, the move in operational models such as Cloud Computing (leveraging the virtualization theme) and the up-stack crawl from IaaS to PaaS (covered also in a blog I wrote titled: Silent Lucidity: IaaS – Already A Dinosaur?) seems to indicate a general trending toward a reduction in the number of layers in the overall compute stack.

Something I saw this morning reminded me of this and its relation to how the evolution and integration of various functions — such as virtualization and security — directly into CPUs themselves are going to dramatically disrupt how we perceive and value “virtualization” and “cloud” in the long run.

I’m not going to go into much detail because there’s a metric crapload of NDA type stuff associated with the details, but I offer you this as something you may have already thought about and the industry is gingerly crawling toward across multiple platforms.  You’ll have to divine and associate the rest:

Think “Microkernels”

…and in the immortal words of Forrest Gump “That’s all I’m gonna say ’bout that.”

/Hoff

* Ray DePena humorously quipped on Twitter that “…the flying car never materialized,” to which I retorted “Incorrect. It has just not been mass produced…” I believe this progression will — and must — materialize.

Enhanced by Zemanta

VMware vCloud Architecture ToolKit (vCAT) 2.0 – Get Some!

September 8th, 2011 No comments

Here’s a great resource for those of you trying to get your arms around VMware’s vCloud Architecture:

VMware vCloud Architecture ToolKit (vCAT) 2.0

This is a collection of really useful materials, clearly painting a picture of cloud rosiness, but valuable to understand how to approach the various deployment models and options for VMware’s cloud stack:

Enhanced by Zemanta