Archive

Archive for the ‘Cloud Security Alliance’ Category

More On Cloud and Hardware Root Of Trust: Trusting Cloud Services with Intel® TXT

May 6th, 2011 No comments

Whilst at CloudConnect I filmed some comments with Intel, RSA, Terremark and HyTrust on Intel’s Trusted Execution Technology (TXT) and its implications in the Cloud Computing space specific to “trusted cloud” and using the underlying TPM present in many of today’s compute platforms.

The 30 minute session got cut down into more consumable sound bites, but combined with the other speakers, it does a good job setting the stage for more discussions regarding this important technology.

I’ve written previously on cloud and TXT with respect to measured launch environments and work done by RSA, Intel and VMware: More On High Assurance (via TPM) Cloud Environments. Hopefully we’ll see more adoption soon.

Enhanced by Zemanta

Dedicated AWS VPC Compute Instances – Strategically Defensive or Offensive?

March 28th, 2011 9 comments

Chugging right along on the feature enhancement locomotive, following the extension of networking capabilities of their Virtual Private Cloud (VPC) offerings last week (see: AWS’ New Networking Capabilities – Sucking Less 😉 ,) Amazon Web Services today announced the availability of dedicated (both on-demand and dedicated) compute instances within a VPC:

Dedicated Instances are Amazon EC2 instances launched within your Amazon Virtual Private Cloud (Amazon VPC) that run hardware dedicated to a single customer. Dedicated Instances let you take full advantage of the benefits of Amazon VPC and the AWS cloud – on-demand elastic provisioning, pay only for what you use, and a private, isolated virtual network, all while ensuring that your Amazon EC2 compute instances will be isolated at the hardware level.

That’s interesting, isn’t it?  I remember writing this post ” Calling All Private Cloud Haters: Amazon Just Peed On Your Fire Hydrant… and chuckling when AWS announced VPC back in 2009 in which I suggested that VPC:

  • Legitimized Private Cloud as a reasonable, needed, and prudent step toward Cloud adoption for enterprises,
  • Substantiated the value proposition of Private Cloud as a way of removing a barrier to Cloud entry for enterprises, and
  • Validated the ultimate vision toward hybrid Clouds and Inter-Cloud

That got some hackles up.

So this morning, people immediately started squawking on Twitter about how this looked remarkably like (or didn’t) private cloud or dedicated hosting.  This is why, about two years ago, I generated this taxonomy that pointed out the gray area of “private cloud” — the notion of who manages it, who owns the infrastructure, where it’s located and who it’s consumed by:

I did a lot of this work well before I utilized it in the original Cloud Security Alliance Guidance architecture chapter I wrote, but that experienced refined what I meant a little more clearly and this version was produced PRIOR to the NIST guidance which is why you don’t see mention of “community cloud”:

  1. Private
    Private Clouds are provided by an organization or their designated service provider and offer a single-tenant (dedicated) operating environment with all the benefits and functionality of elasticity* and the accountability/utility model of Cloud.  The physical infrastructure may be owned by and/or physically located in the organization’s datacenters (on-premise) or that of a designated service provider (off-premise) with an extension of management and security control planes controlled by the organization or designated service provider respectively.
    The consumers of the service are considered “trusted.”  Trusted consumers of service are those who are considered part of an organization’s legal/contractual umbrella including employees, contractors, & business partners.  Untrusted consumers are those that may be authorized to consume some/all services but are not logical extensions of the organization.
  2. Public
    Public Clouds are provided by a designated service provider and may offer either a single-tenant (dedicated) or multi-tenant (shared) operating environment with all the benefits and functionality of elasticity and the  accountability/utility model of Cloud.
    The physical infrastructure is generally owned by and managed by the designated service provider and located within the provider’s datacenters (off-premise.)  Consumers of Public Cloud services are considered to be untrusted.
  3. Managed
    Managed Clouds are provided by a designated service provider and may offer either a single-tenant (dedicated) or multi-tenant (shared) operating environment with all the benefits and functionality of elasticity and the  accountability/utility model of Cloud.The physical infrastructure is owned by and/or physically located in the organization’s datacenters with an extension of management and security control planes controlled by the designated service provider.  Consumers of Managed Clouds may be trusted or untrusted.
  4. Hybrid
    Hybrid Clouds are a combination of public and private cloud offerings that allow for transitive information exchange and possibly application compatibility and portability across disparate Cloud service offerings and providers utilizing standard or proprietary methodologies regardless of ownership or location.  This model provides for an extension of management and security control planes.  Consumers of Hybrid Clouds may be trusted or untrusted.

* Note: the benefits of elasticity don’t imply massive scale, which in many cases is not a relevant requirement for an enterprise.  Also, ultimately I deprecated the “managed” designation because it was a variation on a theme, but you can tell that ultimately the distinction I was going for between private and hybrid is the notion of OR versus AND designations in the various criteria.

AWS’ dedicated VPC options now give you another ‘OR’ option when thinking about who manages, owns the infrastructure your workloads run on, and more importantly where.  More specifically, the notion of ‘virtual’ cloud becomes less and less important as the hybrid nature of interconnectedness of resources starts to make more sense — regardless of whether you use overlay solutions like CloudSwitch, “integrated” solutions from vendors like VMware or Citrix or from AWS.  In the long term, the answer will probably be “D) all of the above.”

Providing dedicated compute atop a hypervisor for which you are the only tenant will be attractive to many enterprises who have trouble coming to terms with sharing memory/cpu resources with other customers.  This dedicated functionality costs a pretty penny – $87,600 a year, and as Simon Wardley pointed out that this has an interesting effect inasmuch as it puts a price tag on isolation:

Here’s the interesting thing that goes to the title of this post:

Is this a capability that AWS really expects to be utilized as they further blur the lines between public, private and hybrid cloud models OR is it a defensive strategy hinged on the exorbitant costs to further push enterprises into shared compute and overlay security models?

Specifically, one wonders if this is a strategically defensive or offensive move?

A single tenant atop a hypervisor atop dedicated hardware — that will go a long way toward addressing one concern: noisy (and nosy) neighbors.

Now, keep in mind that if an enterprise’s threat modeling and risk management frameworks are reasonably rational, they’ll realize that this is compute/memory isolation only.  Clearly the network and storage infrastructure is still shared, but the “state of the art” in today’s cloud of overlay encryption (file systems and SSL/IPSec VPNs) will likely address those issues.  Shared underlying cloud management/provisioning/orchestration is still an interesting area of concern.

So this will be an interesting play for AWS. Whether they’re using this to take a hammer to the existing private cloud models or just to add another dimension in service offering (logical, either way) I think in many cases enterprises will pay this tax to further satisfy compliance requirements by removing the compute multi-tenancy boogeyman.

/Hoff

Enhanced by Zemanta

Video Of My CSA Presentation: “Commode Computing: Relevant Advances In Toiletry & I.T. – From Squat Pots to Cloud Bots – Waste Management Through Security Automation”

February 19th, 2011 13 comments

This is probably my most favorite presentation I have given.  It was really fun.  I got so much positive feedback on what amounts to a load of crap. 😉

This video is from the Cloud Security Alliance Summit at the 2011 RSA Security Conference in San Francisco.  I followed Mark Benioff from Salesforce and Vivek Kundra, CIO of the United States.

Here is a PDF of the slides if you are interested.

Part 1:

Part 2:

Enhanced by Zemanta

My Warm-Up Acts at the RSA/Cloud Security Alliance Summit Are Interesting…

February 8th, 2011 2 comments
Red and Yellow, two of M&M's

Besides a panel or two and another circus-act talk with Rich Mogull, I’m thrilled to be invited to present again at the Cloud Security Alliance Summit at RSA this year.

One of my previous keynotes at a CSA event was well received: Cloudersize – A cardio, strength & conditioning program for a firmer, more toned *aaS

Normally when negotiating to perform at such a venue, I have my people send my diva list over to the conference organizers.  You know, the normal stuff: only red M&M’s, Tupac walkout music, fuzzy blue cashmere slippers and Hoffaccinos on tap in the green room.

This year, understanding we are all under pressure given the tough economic climate, I relaxed my requirements and instead took a deal for a couple of ace warm-up speakers to goose the crowd prior to my arrival.

Here’s who Jim managed to scrape up:

9:00AM – 9:40AM // Keynote: “Cloud 2: Proven, Trusted and Secure”
Speaker: Marc Benioff, CEO, Salesforce.com

9:40AM – 10:10AM // Keynote: Vivek Kundra, CIO, White House

10:10AM – 10:30AM // Presentation: “Commode Computing: Relevant Advances In Toiletry – From Squat Pots to Cloud Bots – Waste Management Through Security Automation”
Presenting: Christofer Hoff, Director, Cloud & Virtualization Solutions, Cisco Systems

I guess I can’t complain 😉

See you there. Bring rose petals and Evian as token gifts to my awesomeness, won’t you?

/Hoff

Enhanced by Zemanta

Incomplete Thought: Why We Have The iPhone and AT&T To Thank For Cloud…

December 15th, 2010 1 comment
Image representing iPhone as depicted in Crunc...
Image via CrunchBase

I’m not sure this makes any sense whatsoever, but that’s why it’s labeled “incomplete thought,” isn’t it? 😉

A few weeks ago I was delivering my Cloudinomicon talk at the Cloud Security Alliance Congress in Orlando and as I was describing the cyclical nature of computing paradigms and the Security Hamster Sine Wave of Pain, it dawned on me — out loud — that we have Apple’s iPhone and its U.S. carrier, AT&T, to thank for the success of Cloud Computing.

My friends from AT&T perked up when I said that.  Then I explained…

So let me set this up. It will require some blog article ping-pong in order to reference earlier scribbling on the topic, but here’s the very rough process:

  1. I’ve pointed out that there are two fundamental perspectives when describing Cloud and Cloud Computing: the operational provider’s view and the experiential consumer’s view.  To the provider, the IT-centric, empirical and clinical nuances are what matters. To the consumer, anything that connects to the Internet via any computing platform using any app that interacts with any sort of information is also cloud.  There’s probably a business/market view, but I’ll keep things simple for purpose of illustration.  I wrote about this here:  Cloud/Cloud Computing Definitions – Why they Do(n’t) Matter…
  2. As we look at the adoption of cloud computing, the consumption model ultimately becomes more interesting than how the service is delivered (as it commoditizes.) My presentation “The Future of Cloud” focused on the fact that the mobile computing platforms (phones, iPads, netbooks, thin(ner) clients, etc) are really the next frontier.  I pointed out that we have the simultaneous mass re-centralization of applications and data in massive cloud data centers (however distributed ethereally they may be) and the massive distribution of the same applications and data across increasingly more intelligent, capable and storage-enabled mobile computing devices.  I wrote about this here: Slides from My Cloud Security Alliance Keynote: The Cloud Magic 8 Ball (Future Of Cloud)
  3. The iPhone isn’t really that remarkable a piece of technology in and of itself, in fact it capitalizes on and cannibalizes many innovations and technologies that came before it.  However, as I mentioned in my post “Cloud Maturity: Just Like the iPhone, There’s An App For That…The thing I love about my iPhone is that it’s not a piece of technology I think about but rather, it’s the way I interact with it to get what I want done.  It has its quirks, but it works…for millions of people.  Add in iTunes, the community of music/video/application artists/developers and the ecosystem that surrounds it, and voila…Cloud.”

  4. At each and every compute paradigm shift, we’ve seen the value of the network waffle between “intelligent” platform and simple transport depending upon where we were with the intersection of speeds/feeds and ubiquity/availability of access (the collision of Moore’s and Metcalfe’s laws?)  In many cases, we’ve had to rely on workarounds that have hindered the adoption of really valuable and worthwhile technologies and operational models because the “network” didn’t deliver.

I think we’re bumping up against point #4 today.  So here’s where I find this interesting.  If we see the move to the consumerized view of accessing resources from mobile platforms to resources located both on-phone and in-cloud, you’ll notice that even in densely-populated high-technology urban settings, we have poor coverage, slow transit and congested, high-latency, low-speed access — wired and wireless for that matter.

This is a problem. In fact it’s such a problem that if we look backward to about 4 years ago when “cloud computing” and the iPhone became entries in the lexicon of popular culture, this issue completely changed the entire application deployment model and use case of the iPhone as a mobile platform.  Huh?

Do you remember when the iPhone first came out? It was a reasonably capable compute platform with a decent amount of storage. It’s network connectivity, however, sucked.

Pair that with the fact that the application strategy was that there was emphatically, per Steve Jobs, not going to be native applications on the iPhone for many reasons, including security.  Every application was basically just a hyperlink to a web application located elsewhere.  The phone was nothing more than a web browser that delivered applications running elsewhere (for the most part, especially when things like Flash were’nt present.) Today we’d call that “The Cloud.”

Interestingly, at this point, he value of the iPhone as an application platform was diminished since it was not highly differentiated from any other smartphone that had a web browser.

Time went by and connectivity was still so awful and unreliable that Apple reversed direction to drive value and revenue in the platform, engaged a developer community, created the App Store and provided for a hybrid model — apps both on-platform and off — in order to deal with this lack of ubiquitous connectivity.  Operating systems, protocols and applications were invented/deployed in order to deal with the synchronization of on- and off-line application and information usage because we don’t have pervasive high-speed connectivity in the form of cellular or wifi such that we otherwise wouldn’t care.

So this gets back to what I meant when I said we have AT&T to thank for Cloud.  If you can imagine that we *did* have amazingly reliable and ubiquitous connectivity from devices like our iPhones — those consumerized access points to our apps and data — perhaps the demand for and/or use patterns of cloud computing would be wildly different from where they are today. Perhaps they wouldn’t, but if you think back to each of those huge compute paradigm shifts — mainframe, mini, micro, P.C., Web 1.0, Web 2.0 — the “network” in terms of reliability, ubiquity and speed has always played a central role in adoption of technology and operational models.

Same as it ever was.

So, thanks AT&T — you may have inadvertently accelerated the back-end of cloud in order to otherwise compensate, leverage and improve the front-end of cloud (and vice versa.)  Now, can you do something about the fact that I have no signal at my house, please?

/Hoff

Enhanced by Zemanta

EMC [Private] Cloud Architect Certifications…Interesting.

December 6th, 2010 4 comments

EMC today launched two new private cloud architect certifications.  I find it intriguing that the certification is described as “Leverag[ing] ‘open’ curriculum training and certification focused on technology concepts and principles applicable to any vendor environment.”  I’ll be interested to see how applicable to Citrix and Hyper-V environments the courseware is… 😉

From their community blog:

Today we announced two new EMC Proven Professional certifications tracks. These advanced level tracks are targeted toward architects, designers, and consultants who are, or will be, responsible for designing highly virtualized cloud-ready infrastructures leading to the design of IT-as-a-Service environments for Private Cloud as well as for Service Providers.

  • Cloud Architect (EMCCA) certification is targeted toward architects who deliver virtualization and cloud designs based on business strategies encompassing all key technical domains (compute, storage, networking, applications, etc).
  • Data Center Architect (EMCDCA) certification is for architects and designers who provide detailed designs for information storage specific technical domains to complement, expand, and complete their overall virtualization and cloud design.

Both tracks are based on ‘open’ curriculum where the focus is on technology/principles rather than specific products (similar to ISM design).

We strongly believe that both these tracks meet a necessary requirement for organizations and individual professionals as they plan extensive virtualization and adoption of cloud computing…please do take some time and review the details of these new exciting tracks by visting the EMC Education Services Portal or downloading this brochure (pdf).

It’s taking me a while to click through the various PDF’s which explain the various levels and requirements for the EMC Cloud Architect (EMCCA) certifications:

  • EMCISA PREREQUISITE: INFORMATION STORAGE ASSOCIATE CERTIFICATION
  • EMCCA VIRTUALIZED INFRASTRUCTURE – SPECIALIST-LEVEL CERTIFICATION
  • EMCCAe IT-AS-A-SERVICE – EXPERT-LEVEL CERTIFICATION
I look forward to digesting this all and seeing where the Cloud Security Alliance’s CCSK (Certificate of Cloud Security Knowledge) aligns.
/Hoff
Enhanced by Zemanta

I’ll Say It Again: Security Is NOT the Biggest Barrier To Cloud…

December 6th, 2010 3 comments
Cloud computing icon
Image via Wikipedia

Nope.

Security is not the biggest barrier to companies moving to applications, information and services delivered using cloud computing.

What is?

Compliance.

See Cloud: Security Doesn’t Matter (Or, In Cloud, Nobody Can Hear You Scream) and You Can’t Secure The Cloud…

That means what one gives up in terms of direct operational control, one must gain back in terms of visibility and transparency (sort of like www.cloudaudit.org)

Discuss.

/Hoff

Enhanced by Zemanta

FedRAMP. My First Impression? We’re Gonna Need A Bigger Boat…

November 3rd, 2010 3 comments

I’m grumpy, confused and scared.  Classic signs of shock.  I can only describe what I’m feeling by virtue of an analog…

There’s a scene in the movie Jaws where Chief Brody, chumming with fish guts to attract and kill the giant shark from the back of the boat called “The Orca,” meets said fish for the first time.  Terrified by it’s menacing size, he informs [Captain] Quint “You’re gonna need a bigger boat.”

I felt like that today as I read through the recently released draft of the long-anticipated FedRAMP documents.  I saw the menace briefly surface, grin at me, and silently slip back into the deep.  Sadly, channeling Brody, I whispered to myself “…we’re gonna need something much sturdier to land this fish we call cloud.”

I’m not going to make any friends with this blog.

I can barely get my arms around all of the issues I have.  There will be sequels, just like with Jaws, though unlike Roy Schneider, I will continue to be as handsome as ever.

Here’s what I do know…it’s 81 pages long and despite my unhappiness with the content and organization, per Vivek Kundra’s introduction, I can say that it will certainly “encourage robust debate on the best path forward.”  Be careful what you ask for, you might just get it…

What I expected isn’t what was delivered in this document. Perhaps in the back of my mind it’s exactly what I expected, it’s just not what I wanted.

This is clearly a workstream product crafted by committee and watered down in the process.  Unlike the shark in Jaws, it’s missing it’s teeth, but it’s just as frightening because its heft is scary enough.  Even though all I can see is the dorsal fin cresting the water’s surface,  it’s enough to make me run for the shore.

As I read though the draft, I was struck by a wave of overwhelming disappointment.  This reads like nothing more than a document which scrapes together other existing legacy risk assessment, vulnerability management, monitoring and reporting frameworks and loosely defines interactions between various parties to arrive at a certification which I find hard to believe isn’t simply a way for audit companies to make more money and service providers to get rubber-stamped service ATO’s without much in the way of improved security or compliance.

This isn’t bettering security, compliance, governance or being innovative.  It’s not solving problems at a mass scale through automation or using new and better-suited mousetraps to do it.  It’s gluing stuff we already have together in an attempt to make people feel better about a hugely disruptive technical, cultural, economic and organizational shift.  This isn’t Gov2.0 at all.  It’s Gov1.0 with a patch.  It’s certainly not Cloud.

Besides the Center for Internet Security reference, there’s no mention of frameworks, tools, or organizations outside of government at all…that explains the myopic focus of “what we have” versus “what we need.”

The document is organized into three chapters:

Chapter 1: Cloud Computing Security Requirement Baseline
This chapter presents a list of baseline security controls for Low and Moderate
impact Cloud systems. NIST Special Publication 800-53R3 provided the foundation
for the development of these security controls.

Chapter 2: Continuous Monitoring
This chapter describes the process under which authorized cloud computing systems
will be monitored. This section defines continuous monitoring deliverables,
reporting frequency and responsibility for cloud service provider compliance with
FISMA.

Chapter 3: Potential Assessment & Authorization Approach
This chapter describes the proposed operational approach for A&A’s for cloud
computing systems. This reflects upon all aspects of an authorization (including
sponsorship, leveraging, maintenance and continuous monitoring), a joint
authorization process, and roles and responsibilities for Federal agencies and Cloud
Service Providers in accordance with the Risk Management Framework detailed in
NIST Special Publication 800-37R1.

It’s clear that the document was written almost exclusively from the perspective of farming out services to Public cloud providers capable of meeting FIPS 199 Low/Moderate requirements.  It appears to be written in the beginning from the perspective of SaaS services and the scoping and definition of cloud isn’t framed — so it’s really difficult to understand what sort of ‘cloud’ services are in scope.  NIST’s own cloud models aren’t presented.  Beyond Public SaaS services, it’s hard to understand whether Private, Hybrid, and Community clouds — PaaS or IaaS — were considered.

It’s like reading an article in Wired about the Administration’s love affair with Google while the realities of security and compliance are cloudwashed over.

I found the additional requirements and guidance related to the NIST 800-53-aligned control objectives to be hit or miss and some of them utterly laughable (such as SC-7 – Boundary Protection: “Requirement: The service provider and service consumer ensure that federal information (other than unrestricted information) being transmitted from federal government entities to external entities using information systems providing cloud services is inspected by TIC processes.”  Good luck with that.  Sections on backup are equally funny.

The “Continuous Monitoring” section requirements wherein the deliverable frequency and responsibile party is laid out engenders a response from “The Princess Bride:”

You keep using that word (continuous)…I do not think it means what you think it means…

Only 2 of the 14 categories are those which FedRAMP is required to provide (pentesting and IV&V of controls.)  All others are the responsibility of the provider.

Sigh.

There’s also not a clear distinction that in a service deployed on IaaS (as an example) where anything in the workload’s VM fits into this scheme (you know…all the really important stuff like information and applications) and how agency processes intersect with the CSP, FedRAMP and the  JAB.

The very dynamism and agility of cloud are swept under the rug, especially in sections discussing change control.  It’s almost laughable…code changes in some “cloud” SaaS vendors every few hours.  The rigid and obtuse classification of the severity of changes is absolutely ludicrous.

I’m unclear if the folks responsible for some of this document have ever used cloud based services, frankly.

“Is there anything good in the document,” you might ask?  Yes, yes there is. Firstly, it exists and frames the topic for discussion.  We’ll go from there.

However, I’m at a loss as how to deliver useful and meaningful commentary back to this team using the methodology they’ve constructed…there’s just so much wrong here.

I’ll do my best to hook up with folks at the NIST Cloud Workshop tomorrow and try, however if I smell anything remotely like seafood, I’m outa there.

/Hoff

Related articles

Enhanced by Zemanta

What’s The Problem With Cloud Security? There’s Too Much Of It…

October 17th, 2010 3 comments

Here’s the biggest challenge I see in Cloud deployment as the topic of security inevitably occurs in conversation:

There’s too much of it.

Huh?

More specifically, much like my points regarding networking in highly-virtualized multi-tenant environments — it’s everywhere — we’ve got the same problem with security.  Security is shot-gunned across the cloud landscape in a haphazard fashion…and the buck (pun intended) most definitely does not stop here.

The reality is that if you’re using IaaS, the lines of demarcation for the responsibility surrounding security may in one take seemed blurred but are in fact extremely well-delineated, and that’s the problem.  I’ve seen quite a few validated design documents outlining how to deploy “secure multi-tentant virtualized environments.”  One of them is 800 pages long.

Check out the diagram below.

I quickly mocked up an IaaS stack wherein you have the Cloud provider supplying, operating, managing and securing the underlying cloud hardware and software layers whilst the applications and information (contained within VM boundaries) are maintained by the consumer of these services.  The list of controls isn’t complete, but it gives you a rough idea of what gets focused on. Do you see some interesting overlaps?  How about gaps?

This is the issue; each one of those layers has security controls in it.  There is lots of duplication and there is lots of opportunity for things to be obscured or simply not accounted for at each layer.

Each of these layers and functional solutions is generally managed by different groups of people.  Each of them is generally managed by different methods and mechanisms.  In the case of IaaS, none of the controls at the hardware and software layers generally intercommunicate and given the abstraction provided as part of the service offering, all those security functions are made invisible to the things running in the VMs.

A practical issue is that the FW, VPN, IPS and LB functions at the hardware layer are completely separate from the FW, VPN, IPS and LB functions at the software layer which are in turn completely separate from the FW, VPN, IPS and LB functions which might be built into the VM’s (or virtual appliances) which sit stop them.

The security in the hardware is isolated from the security in the software which is isolated from the security in the workload.  You can, today, quite literally install the same capabilities up and down the stack without ever meeting in the middle.

That’s not only wasteful in terms of resources but incredibly prone to error in both construction, management and implementation (since at the core it’s all software, and software has defects.)

Keep in mind that at the provider level the majority of these security controls are focused on protecting the infrastructure, NOT the stuff atop it.  By design, these systems are blind to the workloads running atop them (which are often encrypted both at rest and in transit.)  In many cases this is why a provider may not be able to detect an “attack” beyond data such as flows/traffic.

To make things more interesting, in some cases the layer responsible for all that abstraction is now the most significant layer involved in securing the system as a whole and the fundamental security elements associated with the trust model we rely upon.

The hypervisor is an enormous liability; there’s no defense in depth when your primary security controls are provided by the (*ahem*) operating system provider.  How does one provide a compensating control when visibility/transparency [detective] are limited by design and there’s no easy way to provide preventative controls aside from the hooks the thing you’re trying to secure grants access to?

“Trust me” ain’t an appropriate answer.  We need better visibility and capabilities to robustly address this issue.  Unfortunately, there’s no standard for security ecosystem interoperability from a management, provisioning, orchestration or monitoring perspective even within a single stack layer.  There certainly isn’t across them.

In the case of Cloud providers who use commodity hardware with big, flat networks with little or no context for anything other than the flows/IP mappings running over them (thus the hardware layer is portrayed as truly commoditized,) how much better/worse do you think the overall security posture is of a consumer’s workload running atop this stack.  No, that’s not a rhetorical question.  I think the case could be argued either side of the line in the sand given the points I’ve made above.

This is the big suck.  Cloud security suffers from the exact same siloed security telemetry problems as legacy operational models…except now it does it at scale. This is why I’ve always made the case that one can’t “secure the Cloud” — at least not holistically — given this lego brick problem.   Everyone wants to make the claim that they’re technology is that which will be the first to solve this problem.  It ain’t going to happen. Not with the IaaS (or even PaaS) model, it won’t.

However, there is a big opportunity to move forward here.  How?  I’ll give you a hint.  It exists toward the left side of the diagram.

/Hoff

Enhanced by Zemanta

Don’t Hassle the Hoff: Recent & Upcoming Speaking Engagements

September 20th, 2010 1 comment
Recent Speaking Engagements/Confirmed to  speak at the following upcoming events:

There are a ton of venues I haven’t added here because they are directly related to customer visits that may not wish to be disclosed.  You can see the prior list of speaking engagements listed here.

[I often get a bunch of guff as to why I make these lists: ego, horn-tooting, self-aggrandizement. I wish I thought I were that important. ;) The real reason is that it helps me keep track of useful stuff focused not only on my participation, but that of the rest of the blogosphere.  It also allows folks to plan meet-ups]

/Hoff